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Abstract- Control approaches for micro-grid (MG) systems are recently developed for efficient energy management in 
distributed systems. The aim is to increase the integration of renewable energy sources (RES) in buildings while 
keeping optimal operational conditions of storage devices. However, the variability and the unpredictable behavior of 
the power produced by RESs require the use of energy management systems and adaptive control strategies for their 
seamless integration within the traditional electric grid. In this paper, a model predictive control (MPC) strategy is 
developed, named MAPCAST, for measuring, analyzing, predicting, and forecasting actions in order to ensure efficient 
and optimal operation of MG systems. The control strategy is based on machine-learning algorithms to predict main 
parameter inputs, which are used for forecasting suitable actions. Its main objective is to manage the batteries' 
charge/discharge (C/D) currents, and consequently, the battery state of charge (SoC), taking into consideration the 
variable nature of RES generation and loads demand satisfaction. A real data-set was gathered from our actual MG 
system using an IoT/Big-Data platform, which was deployed to measure the different input control parameters. 
Simulation results are presented to show the utility of the proposed control strategy for efficient operation and optimal 
energy balance in MG systems. 

Keywords: Micro-grid systems, Energy management system, IoT and Big-Data platform, Machine-learning algorithms, Model 
predictive control. 

 

1. Introduction 

In the past few years, RES technologies have been 
developed as potential clean energy sources to minimize 
greenhouse gas emissions by reducing electricity 
consumption from traditional electricity generators [1]. 
Moreover, the deployment of RES, loads, and storage 
devices together with the TEG has enabled the deployment 
of the new concept of MG systems into energy efficient 

buildings [2]. However, the uncertainty and intermittency of 
power generated from RES, the variability of power 
consumption together with the storage limits have created 
many challenges for their seamless integration into buildings. 
Moreover, the stochastic nature of weather conditions (e.g., 
irradiance, temperature) and buildings’ occupancy (e.g., 
activities) could influence the power production and 
consumption (i.e., Demand/Response). Control strategies and 
optimal energy management approaches are proposed to 
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ensure the energy balance (Demand/Response) in MG 
systems.  

Generally, these control strategies use three main inputs 
for computing real-time decisions: the RES power 
production, the power consumption, and storage devices 
states. This kind of approaches requires the deployment of 
the control loop (i.e., sense, transmit, analyze data, and 
compute the required action). In fact, in real-sitting 
scenarios, these control approaches could spend a lot of time 
to make decisions, which might be generated right after the 
moment of the blackouts. Intelligent and predictive control 
strategies are, therefore, required to ensure a safe and flexible 
operation for MG systems.  

In the past few years, different control strategies have 
been introduced for managing the power flows and quality in 
MG systems [3, 4]. For instance, Authors in [5] have 
proposed an MPC strategy in order to control a PV plant 
connected to the storage system. The objective was to reduce 
the cost of electricity bills by optimizing the system’s 
operation using predictive electricity price, PV power 
production, and load consumption. In [6], an MPC strategy is 
presented to balance power flows of a multi-energy system, 
which is composed of a fuel cell, hydrogen storage, and PV 
panels. The work presented in [7] uses an MPC strategy to 
optimize the energy flow in MG systems. A framework was 
investigated by deploying an experimental grid-connected 
MG that includes RES and battery storage system. In this 
work, neither the platform, which is used to generate the 
input parameters for the MPC, nor the C/D battery is clearly 
stated. 

Another interesting work was presented in [8] in which 
authors investigated an MPC strategy for real-time control of 
power produced by a PV plant. The installed strategy 
allowed adapting the PV and storage’s generation depending 
on the actual load’s demand. In [9], the HOMER software is 
utilized for electrical resources sizing in a MG system taking 
into account the power price forecasts. The objective of the 
proposed method is related to optimal sizing and energy 
management of RES and storage devices by considering the 
satisfaction of loads demand and the reduction of fossil fuel 

dependency. Moreover, the work presented in [10] proposed 
an energy management system to establish the best possible 
situation between technologies cost and reliability in a 
standalone hybrid system. This later is composed of wind 
turbines, PV panels, and batteries. The system costs consist 
of the initial investment and the maintenance of equipment 
replacement. In [11], a control strategy for energy 
management in multi-MG Park is developed. It allowed 
balancing the power demand/response while reducing the 
electricity cost delivered to consumers. Based on the MPC, 
this control strategy is used to efficiently coordinate the 
energy produced between different MG systems. Alike MG 
systems, MPC strategies were also used for energy 
management of passive/active systems’ control in buildings. 
For instance, in [12], an MPC control strategy is used for 
ventilations’ speed control in buildings. Using appropriate 
building data (e.g., energy consumption, CO2 regulation), 
authors showed the efficient deployment of the MPC to 
reduce the ventilators’ energy consumption by keeping the 
occupants’ comfort. Moreover, authors in [13] propose a 
hierarchical spectral clustering method, which meets the 
practical requirements and constraints of the power system 
only for islanded MG. Hence, other interesting work are 
presented in literature, which use the real-time data 
monitoring for energy management, control, and power 
quality in MG systems [14-17]. 

It is worth noting that the aim of these approaches is to 
control and efficiently manage MG systems by forecasting 
the right control decisions. However, in order to carry out 
these approaches platforms are required for data gathering, 
processing, and real-time forecasting. Recent technologies, 
such as Internet-of-Things combined with Big-data 
technologies for real-time machine-learning (ML) 
algorithms, could be used in the MG system in order to 
autonomously measure, analyze, predict, and forecast actions 
(MAPCAST) depending on the actual and predicted context. 
In fact, ML algorithms could predict inputs values for the 
control strategy in order to generate Demand/Response 
schedules/actions. This could increase the system’s reliability 
and minimize/avoid blackouts. 

 
Fig. 1. Operation schemes for power forecasting process and MPC for energy management
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In this work, we have deployed an IoT/BigData platform 
together with ML algorithms to develop an energy 
management system for energy balance in MG systems. In 
fact, a ML algorithm was deployed to predict future values, 
which are used by the control strategy as is depicted in Fig. 
1. An MPC strategy is developed to solve the optimal 
constraints function by computing efficient management 
actions. It presents an essential control approach that can be 
used to predict and forecast the suitable actions in MG 
systems according to the system’s constraints [5, 12, 18, 19]. 
More precisely, the main contribution of this article is the 
development of an intelligent and predictive control strategy 
for energy management in MG system based on a MPC 
model. To reach this aim, the following studies are realized: 

Ø An energy management approach based on the 
MAPCAST principles is introduced for MG system’s 
control. 

Ø The controllable system and the operational 
constraints are modeled by a state-space equation for MPC 
deployment. 

Ø A data-monitoring platform is installed for real-time 
data forecasting in order to carry out the MAPCAST control 
loop.  

Ø The effectiveness of the deployed control approach 
is studied in real-sitting scenarios using our MG system. 

The rest of this paper is structured as follows. In section 
2, introduces the MPC strategy and the MG model together 
with the deployed platform. Experimental and simulation 
results of the proposed approach using real-sitting scenarios 
are presented in Section 3. Section 4 provides conclusions 
and perspectives. 

2. Materials and methods 

2.1. Micro-grid platform 

A MG system is installed for testing and performance 
evaluation of control approaches. It is composed of RES 
source (e.g., wind turbine, PV panels) and electrical storage 

systems (e.g., batteries) coupled together with the TEG to 
ensure the power to our building’s demand (e.g., lighting 
system, ventilation). The RESs power production, the loads’ 
demand, and the SoC values are gathered from the different 
installed sensors (e.g., voltage and current sensors), which 
are mounted in our data collection platform [8]. In fact, an 
IoT and Big-Data platform is also installed and tested for 
data collection, processing, and ML algorithms deployment. 
Mainly, the platform is studied, simulated and experimented 
[20-23], and the models used in this work have been already 
validated. In fact, to examine and validate the behavior of the 
deployed approaches using simulations and experimentation, 
the weather conditions (e.g., wind speed, temperature, and 
irradiance) are collected for the same days of the 
experiments. Furthermore, a set of sensors and actuators are 
deployed to measure the outputs of the PV panels (e.g., 
voltage, current) together with the loads’ consumption and 
the battery’s SoC. In order to figure out the accurate control 
actions, the data gathered from the sensors should be 
analyzed and processed. For that, the deployed IoT/Big-Data 
platform stores the data (e.g., power generation-consumption 
patterns, and weather conditions) and data history is used to 
evaluate the accuracy of ARIMA, which is used to develop 
the intelligent and predictive control strategies. As depicted 
in Fig. 2, a programmable control/card is installed and 
contains different sensors. The control card is connected to a 
micro-computer (Raspberry pi), which is connected directly 
to a Big/Data cluster for analyzes and data storage. 

To summarize, weather conditions are collected to test 
and simulate the deployed system using the real gathered 
data; it is can be used to develop other approaches and 
applications (e.g., PV/Wind power production forecast using 
weather conditions). In addition, power production and 
consumption are collected to simulate and experiment with 
the whole system for the same context. All these data are 
collected and analyzed using our Big-Data platform, it stores 
the data to develop and train ML algorithms [22, 24, 25].

 

Fig. 2. The architecture for the deployed MG system 
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2.2. MG modeling and control approach  

In the deployed MG, RESs are installed to supply the 
electrical power to the active loads. The production surplus is 
stored in the batteries. However, the stochastic nature of the 
weather conditions generates a large variability on the RES 
power production depending on the periods of the days and 
years. Generally, this factor increases the complexity of 
controlling and managing the MG power flows. For that, 
batteries play an important role by balancing and smoothing 
the variability of RESs production. Therefore, the deployed 
control approach considers the batteries SoC evolution in 
order to keep the operating costs of the whole system at a 
reasonable level. For this aim, the deployed batteries are 
modeled and simulated using the OCV model (open-circuit 
voltage) with resistance. As mentioned in equation (1), the 
OCV is written as a SoC function [5, 26, 27]. 

𝑉"#$(𝑡) = 𝑂𝐶𝑉+𝑆𝑜𝐶(𝑡). + 𝑅. 𝐼"#$(𝑡) (1) 

The dynamic voltage of the Ohmic resistance R and the OCV 
present the behavior of the battery voltage variability. This 
equation can be stated as follows: 

𝑌(𝑡) = 𝑎. 𝑆𝑜𝐶(𝑡) + 𝑅. 𝐼 (2) 

where I represents the C/D battery current, a is a factor 
defined by the experimental battery characterization using 
the least-squares method [5, 26], and R presents the Ohmic 
resistance. By considering that the battery current is null 
during the full charged mode of the battery, we can then 
calculate the SoC by exploiting directly the battery’s voltage 
variability. In fact, equation (2) can be presented as follows: 

𝑌(𝑡) = 𝑆𝑜𝐶(𝑡) (3) 

Moreover, using the Coulomb method, the SoC can be 
formulated as the nominal capacity C ratio and is 
accumulated on the operation period τ. It is calculated by the 
current flow-rate measurement and integration over the 
interval of time (equation (4)). 

𝐶(𝑡 + 𝜏) = 𝐶(𝑡) + ∆𝐶 (4) 

We can use the measured battery C/D current 𝐼"#$ together 
with the actual 𝑆𝑜𝐶(𝑡) in order to estimate the future 
values	𝑆𝑜𝐶(𝑡 + 1) by applying equation (5). In this work, the 
measured I_bat is implemented to train the ML algorithm 
and the forecasted current is used to calculate the SoC. The 
deployed predictive control approach uses input prediction 
values to generate the feed-forward. 

𝑆𝑜𝐶(𝑡 + 1) = 𝑆𝑜𝐶(𝑡) + 𝐼"#$(𝑡). ∆𝑡/𝐶 (5) 

The main aim is to manage the C/D current based on the 
control strategy. Therefore, the MPC adjusts the 𝐼"#$ by 
considering the variability of RESs generation and loads 
demand in order to define the operation mode: battery 
charging, battery discharging, or battery-at-rest. The 
constraints of the model are presented by equation (6): 

𝑃;<#= = >
𝑃?@ ± 𝑃"#$ 	; 			𝑖𝑓	𝑃?@ ≥ 0	𝑎𝑛𝑑	𝑆𝑜𝐶 > 𝑆𝑜𝐶JKL
𝑃MNK= 	; 						𝑖𝑓	𝑃?@ < 𝑃;<#=	𝑎𝑛𝑑	𝑆𝑜𝐶 < 𝑆𝑜𝐶JKL

 (6) 

where 𝑃?@ is the PV panels generation, 𝑃;<#=  is the loads’ 
consumption, 𝑃"#$  and 𝑃MNK=  represent respectively the power 
extracted or generated from batteries, and the power 
extracted from the TEG. In fact, the control strategy specifies 
a discharge limit to evade battery deep-discharge when the 
RESs production is unavailable and the battery is at its 
minimum SoC. Moreover, the batteries store the surplus of 
the PV panels generation according to the following cases: 
the battery starts charging during the peak production 
(𝑃;<#= < 𝑃?@), it starts to supply the loads when the demand 
surpasses the PV panels’ production (𝑃;<#= > 𝑃?@), and 
finally the battery is at rest if the SoC is at the fixed threshold 
and the PV power generation is unavailable (𝑆𝑜𝐶 < 𝑆𝑜𝐶JKL	
and 𝑃?@ = 0) or the battery SoC is at the maximum. To keep 
the SoC at its maximum as much as possible, the 
optimization function can be represented by the given 
objective function 𝐸Q (equation (7)), which should be 
minimized within a future horizon n. 

𝐸Q = 𝑆𝑜𝐶J#R S
1
⋮
1U
V − 𝑆𝑜𝐶(𝑡) S

SoC(t)
⋮

SoC(t + n)
V (7) 

The problem constraints that should be satisfied are 
formulated in equation (8) as follow: 

>𝑆𝑜𝐶JKL < 𝑆𝑜𝐶](𝑡 + 𝑘) < 𝑆𝑜𝐶J#R
𝑃?@ ± 𝑃"#$ = 𝑃;<#=

 (8) 

Now, the MPC strategy could be designed based on the 
formulated constraints and the above-mentioned equations, 
which we have defined for managing the power exchange in 
the MG system. In fact, for our system modeling, the 𝑆𝑜𝐶(𝑡) 
is considered as the system state equation. The equation (3) 
expression can be rewritten in the state equation form as 
follow: 

 (9) 

where 𝑥(𝑘) represents the system state for A=1. In this case, 
the 𝐼"#$ is the systems’ input. The equality could be 
interpolated to n-steps-ahead to obtain the following 
representation (equation 10): 

 

(10) 

The matrix form for this representation could be written as 
follows: 

 
(11) 

This equation takes the following form:  

Xa = Aa	x(k) + BaU(k) (12) 
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The observation equation could be interpolated to n steps as 
follows: 

 
(13) 

This representation is equivalent to:	𝑌g = 𝐶̅x(k) + 𝐷a𝑈a (14) 

The following variation of the input vectors is considered as 
follows, 

 

(15) 

The matrix form for this representation is: 

 
(16) 

This representation is equivalent to: 

	 (17) 

Equations (17) and (12) can be combined to obtain the 
following predictive model (equation 18): 

 (18) 

Combining equations (11) and (12), the predictive 
observation model is presented as follows: 

 (19) 

The constraint function to optimize is represented by the 
equation (20), which is equivalent to the command ∆Ua(k) to 
reduce the error. In fact, the battery is used to absorb or 
generate the power satisfying the energy balance 
(Demand/Response). At the same time, it is more important 
to keep the battery at its maximum 𝑆𝑜𝐶J#R when it is 
possible. 

 (20) 

Finally, the error is formulated by 𝐸 = 𝑌 − 𝑌Nkl by 
considering the desired regulation, which is required to reach 
by the control model. Then, to get the control series ΔU, the 
criterion function to optimize is represented by the 
following: 

𝐽 =
1
2 (𝐸𝑄𝐸

p + ∆Ua	𝑅	∆Ua	p) (21) 

where Q and R are, respectively, the error and the inputs’ 
variation covariance matrices. A priory is choosing for the 
diagonal matrix R to ensure the algorithm convergence. The 
control approach manages the system to generate the values 

that minimize the J while respecting the constraint (equation 
(8)). 

 
Fig. 3. A schematic view of the predictive control model 

As illustrated in Fig. 3, by respecting the constraints, the 
deployed MPC controls the battery charged/discharged state 
accordingly. The MPC controller either charges the batteries, 
absorbing the PV panels’ production surplus or discharges 
the batteries to ensure the power demand to the consumers. 
Mainly, by considering the constraints, the TEG is integrated 
and it is used when the battery SoC extents the limit value 
and the PV panels’ production cannot satisfy completely the 
demand. The SoC is considered as an input parameter to the 
MPC model, it is calculated by predicting the battery C/D 
current using the deployed ARIMA algorithm. The battery 
current is also obtained by the prediction of the PV panels’ 
generation as well as the load consumption. 

3. Simulation and experimental results 

The studied MG system is connected to the TEG in order 
to supply the power to the equipment when RESs and storage 
are unavailable. It is mainly composed of PV panels, storage 
devices, and different loads. For the simulated system, excess 
power can be shunted to the battery system to be stored for 
later usage or it is injected to a buffer load that is used to 
simulate the power exchange with the TEG. If the power is 
unavailable from RES, the storage devices continue 
delivering the electricity to the dedicated loads, depending on 
the delivered commands from the MPC model, and when the 
batteries are discharged, the TEG ensures the power supply 
to the loads. 

As described early, we are aiming to deploy the 
MAPCAST closed-loop (measure, analyze, predict, forecast) 
for MG management. A platform was deployed to allow 
sensing and analyzing data generated by sensors. The stored 
data are used to train the ARIMA model and the predicted 
values are used as inputs for the control strategy [7]. In fact, 
input parameters are predicted using ARIMA while control 
actions’ forecasting are computed using the MPC controller. 
These two last phases are described in this section together 
with the performance evaluation. 

3.1. ARIMA model deployment and validation 

In MG control and management, the time horizon is used 
as the main criterion in order to select a suitable forecasting 
algorithm. There are four main categories of algorithms, 
which could be used in MG control and management. They 
are classified according to the forecasting horizon as follows: 
i) very-short term, which is desired for power regulation and 
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service management, ii) short-term, which could be used for 
energy management in the secondary control level), iii) 
medium-term, which is more suitable for maintenance 
planning of power system and electricity market), and iv) 
long term, which is could be used for future energy statistics 
and security for a large scale systems. For each category, a 
set of algorithms (e.g., ANN, ARX, LSTM) can be deployed 
depending on the selected approaches (e.g., physical 
approach, statistical approach). However, some algorithms 
require a long training time, which could affect the control 
actions forecasts. 

In our study, ARIMA is selected for forecasting the 
control inputs values. It is a statistical approach that requires 
little training and forecasting times, from few seconds to 
some minutes. The use of the ARIMA method has a 
fundamental impact on the study of the non-stationary time 
series analysis due to Box and Jenkins approach. This later 
includes five iterative steps as follows [20]: i) the 
differentiation step, in which the data is prepared for the 
model training, ii) the identification step of best ARIMA 
parameters, as presented in Fig. 4, iii) the estimation step, 
which is used to identify the stationary time series having the 
minimum errors, and iv) the diagnostic checking step in 
which a residual is calculated in order to identify if the model 
is a good fit to the data and the autocorrelation is verified for 
the obtained results. 

The deployed algorithm computes at each time the 
different parameters based on the minimum Akaike 
Information Criteria (AIC). As shown in Fig. 4.a, the 
minimum AIC is calculated and the equivalent ARIMA 
parameters are selected. For that, the ARIMA steps are 
realized in order to predict future values by maximizing the 
accuracy between the predicted and the real values. In fact, to 
measure the prediction accuracy, the errors are calculated by 
comparing the predicted and the real values (Fig. 4.b). 

 

 
a) 

 
b) 

Fig. 4. a) The minimum Akaike Information Critera (AIC) b) 
The errors for ARIMA parameters determination 

The prediction of the power generation and the 
electricity demand can be used to calculate the battery SoC 
by the equation (13) and the predicted parameter is used as 

input to the control strategy. During the day, the PV panels 
generate the power to the loads, charge the battery, and the 
surplus is transmitted to a resistance, which is considered as 
the grid injection. As shown in Fig. 5.a, for 48 hours the PV 
power production is collected. For the first day, from 02:00 
pm to around 06:00 pm and due to the bad weather 
conditions, the PVs generation decreases. During this period, 
the battery supplies the power to the load accumulating the 
need for power caused by the decrease of PV generation 
(Fig. 5.b). 

  
a) 

 
b) 

 
c) 

Fig. 5. a) Predictive and real PV generation, b) Predictive 
and real SoC, c) Predictive and real loads consumption 

Moreover, during the night, only the batteries generate 
electricity to supply the load, and when the SoC is at its 
minimum, the control strategy switches from RES to the 
TEG. In addition, to forecast the power consumption during 
the same period of the tests, ARIMA model is deployed 
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using the real data-set of power consumption. It is worth 
noting that the occupants’ activities influence on power 
consumption. As shown in Fig. 5.c, the energy demand 
behavior varies due to lighting and the ventilation speed’s 
variation, which is mainly influenced by occupants’ activities 
[12]. The ARIMA model is trained using the gathered data 
and then the obtained model is used to forecast the desired 
parameters’ values. 

Figure 5.a illustrates the power forecast (orange curve) 
with the real PVs generation (Blue curve). For each instance, 
the deployed ARIMA model generates a value with a 
timestamp of about three minutes. The same for the battery 
SoC, Fig. 5.b indicates that around 06:00 PM the control 
approach switches from renewable energy to the TEG 
because the battery SoC reaches the threshold value as 
predicted. At the same time, the power consumed from RES 
was measured (Fig. 5.c), the orange curve presents the power 
consumption generated by ARIMA model and the blue curve 
is the real power consumption. The Obtained results are used 
as inputs for the MPC in order to predict the suitable action 
by respecting the predefined constraints (𝑃;<#= = 𝑃?@ ±
𝑃"#$). 

3.2. MPC strategy deployment and validation 

The deployed MG system, presented in section 4, is used 
to collect real data, which are used to validate the results for 
both the MPC and a PID controller. As stated above, this 
system contains RESs (e.g., PV, grid), storage systems, and 
active loads (e.g., lighting, ventilators). The PV panels 
charge the batteries, which in turn provide the power to the 
lighting and ventilation systems. However, during the night 
or cloudy days, the batteries discharge and the operation of 
the loads is ensured from the TEG. So, to ensure efficient 
MG management, the control approach uses the predicted 
values (from ARIMA model) to forecast the control 
decisions. The following cases are obtained: i) the PV power 
production has the priority to generate the electricity in order 
to satisfy the loads over the TEG and the storage devices; ii) 
the PV panels supply directly the electricity to the loads 
when it is more important than the loads demand, iii) when 
the PV generation could not satisfy the loads demand, PV 
and the main battery storage supply the power to the loads, 
v) if the battery SoC is less than 50 % and the RESs 
generation is less than the loads demand, then the system 
switches to the TEG. During this period the PV panels 
charge the main energy storage. 

Essentially, the aim of the proposed MAPCAST is to 
optimize the batteries’ C/D current according to the 
electricity production and consumption. In fact, the MPC 
controller allows balancing the power flows accordingly. In 
order to show the effectiveness of the MAPCAST, results 
obtained when using the MPC are compared with those 
obtained from a PID controller. Mainly, the PID model is 
deployed in the charge controller in order to regulate the PV 

power production. Unlike PID, the MPC strategy forecasts 
the suitable actions for either switching to the batteries or to 
the TEG.  

It’s worth noting that the PV system is simulated with 
the same input parameters for real a scenario (e.g., 
irradiance, temperature) with the same load demand 
variability. In addition, a model for the deployed battery is 
characterized in order to be integrated into the simulation. 
The duty cycle of the charge controller and the converter are 
controlled by the commands that are generated by the MPC 
bloc depending on the predicted context of the PV power 
generation, the battery SoC, and the load consumption. 
However, due to some technical problems, the machine-
learning algorithm is deployed separately of this simulation 
bloc, but the obtained forecasting parameters are integrated 
to simulate the MPC bloc. The predictive commands are 
generated and shifted by the forecast time horizon compared 
to the real command obtained by the PID control. 

Moreover, the C/D current variability depends on the PV 
panels’ generation and the demand variability. In fact, the 
battery SoC influences directly to the battery current; more 
the battery is charged more the current decreases. In this 
scenario, the battery C/D current is the setpoint for the MPC 
and the PID model (Fig. 6). It is calculated by the predictive 
C/D current, which depends mainly on the PV panels’ 
production and power consumption as well. 

Figure 6 presents the real variability of the C/D current 
during two days (orange curve). Around 02:00 PM, the 
batteries start to discharge supplying the power to the load 
depending on the constraints presented in equation (8). 
Almost at 06:00 PM, the minimum SoC is reached, and 
during the night, the control/card switches from RESs to the 
TEG. In the morning, the RES start producing the electricity, 
which is used mainly to supply the power to the load, the 
surplus is used to charge the battery. In fact, the obtained 
results are used as a set-point for the MPC and the PID 
model in order to calculate the SoC.  

Figure 7 presents the SoC obtained by the MPC (blue 
curve) and the PID (green curve). The SoC variability is 
presented depending on the MPC and PID controller 
command, which is required to reach the desired SoC. 
Moreover, the ML algorithm predicts future values with 
insignificant errors. Through the deployment of this model, 
the current is generated and it is used to predict the future 
SoC desired at each time. The MPC model uses the SoC to 
forecast future control actions depending on the operational 
context. As shown in Fig. 7.b, during sudden change of the 
values, the PID presents an interesting peak for the transit 
regime. Unlike the PID, the MPC forecasts the 
corresponding power to generate or to extract from storage 
devices avoiding a sudden change of the current. For that, the 
MPC presents a stable regime compared to the PID (Fig. 
7.a). 
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Fig. 6. a) Battery C/D current variability, b) Comparison of the current for the different methods 
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Fig. 7. a) SoC variability for the different methods, b) The obtained SoC comparison for the different methods 

4. Conclusions and perspectives 

In this work, a MAPCAST framework is introduced for 
energy balance in MG systems. In fact, this predictive 
control approach manages the MG by maximizing the usage 
of the RES while considering the storage devices’ limits. For 
that, an IoT/Big-Data platform was developed for data 
gathering, processing, and storage. A real MG system was 
deployed in order to investigate the proposed MAPCAST in 
real sitting scenarios. Data are collected from the MG system 
and are used to train the ARIMA model, which is required 
for the MPC strategy. Moreover, the MPC strategy forecasts 
future actions to control the C/D currents of the battery, by 
considering the specific variability of power production and 
loads’ consumption. The optimization function and the 
constraints are presented for the proposed MPC strategy and 
the obtained results illustrate the utility of the model for 
efficient control of the MG compared to the PID control. In 
addition to the MPC stable behavior, compared to the PID 
controller, for seamless switching between the MG 
components (i.e., RES, battery, electric grid), our ongoing 
work focuses on enhancing it by including the electricity 
price forecasts as a further constraint. Therefore, the energy 
price is an interesting exogenous for both the consumer and 
the central grid. Firstly, as mostly known, the main challenge 
for the actual grid is the “electricity blackouts” that are 
generally caused by high demands during the “peak hours” 
(e.g., morning, evening). Within this context, the electricity 
operators use the price as penalties for the consumer to avoid 
“peak demand” during some periods. Thus, the energy price 
has become an exogenous factor for the grid by minimizing 
the consumption during the period when the price is 
expensive, which is equivalent to the “peak demand period”. 
Secondly, a consumer that has RESs installation with a 
storage system can locally manage the energy flow 
depending on electricity price. For a given scenario, the 
consumer can use the central grid avoiding then the use of 

the local storage system, which will be kept at its maximum 
for usage during the high price periods. Consequently, the 
electricity bill will be minimized for the consumers, and the 
high demand from the grid will be minimized to avoid the 
“electricity blackouts”. 
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