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Abstract- Due to the increasing demand for electricity, Egypt as a nation of limited fossil fuels resources needs to diversify 
power generation portfolio by integrating renewable energy resources. In fact, wind energy has a great potential due to its 
economic efficiency as demonstrated by Egypt's wind atlas. This paper presents an overview of the feasibility of having wind 
power plants at several windy regions in Egypt, along the Gulf of Suez, both sides of the Nile, Mediterranean Sea and South 
Upper Egypt. This was investigated based on huge historical wind speed measurements taken at a height of 50 m over 20 and 30 
years. Electricity cost values are computed based on the levelized cost of energy for the electrical power generation from different 
wind turbines at three scattered regions. The research results would offer objective guidelines for energy policymakers and utility 
operators to consider energy portfolios that are more economically feasible. 

Keywords Renewable Energy, Wind Energy, Cost Analysis, Economic Levelized Cost of Energy (LCOE), Electricity 
Generation Costs. 

1. Introduction 

In this section, the economic valuation of electrical wind 
energy in Egypt based on levelized cost of energy that is 
available in the literature for technical and economic 
perspective, and contributions of the presented manuscript are 
explored in detail. 

1.1. Motivation 

Accelerated technological development leads to an 
increase in the rate of fuel consumption around the world. 
Simultaneously, rising negative impact of CO2  emission on 
the environment, increasing prices and restricted reserves of 
fossil fuel have intensified global attentions to renewable 
energy sources [1]. The wind power production is available 
domestically  and has an increasing  rate reaching 20% 
annually, with a global installed capacity of 651 GW across 

the globe in 2019 [2]. This rapidly increases rates reveal that 
many countries have become highly interested in this kind of 
power sources to enhance their overall generation and 
reducing reliance on traditional sources of energy [3]. At the 
end of 2019, the top countries for renewable energy capacity 
investment were China, the United States, Japan, India, United 
Kingdom, and Taiwan [4].  

1.2. Literature review 

Wind energy potential depends on the existence of a good 
wind resource, the proximity to the transmission system for 
economic connections, and on the fact that, there are no other 
problems that hinder wind development (such as, military 
communications and radar systems) [5]. The economic growth 
of wind capacity depends on the cost of wind relative to 
alternatives. 
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In the presence of high-impact, low-probability (HILP) 
such as natural disasters, the resilience of electrical power 
systems has become an inseparable part in analyzing the 
systems reliable performance but fails to model high-level and 
less likely contingencies. General application areas of 
resilience are presented as economic, social, engineering and 
organizational [6].   

 Renewable energy, electrical vehicle, smart buildings 
have recently emerged as part of the electricity infrastructure. 
Since they have generated particular interest in demand 
forecasting [7]. The main requirements of a future electrical 
power grid are summarized in [8].  

The heating, ventilation and air conditioning (HVAC) 
system accounts for a large proportion of the overall energy 
usage of smart buildings. Researchers have recently explored 
the potential of commercial buildings with proactive demand-
side participation due to the re-structuring of the wholesale 
electricity market and the development of retail electricity 
markets. In [9], the authors proposed model predictive 
controller (MPC) based optimization method to generate 
proactive demand-bid curves for the smart buildings to 
optimize their energy consumption in line with variable prices. 
In [10-11], the authors offered a nonlinear economic model 
predictive controller NL-EMPC to reduce the net cost of 
energy consumption by building’s HVAC system while at the 
same time maintaining the comfort level of building 
occupants. The literature also presents a computing-efficient 
linear model predictive controller LMPC for building HVAC 
systems [12]. LMPC features a non-linear MPC (NLMPC) that 
offers a remarkable computational advantage.  

Over the past few years, Egypt has witnessed remarkable 
development in the field of utilizing renewable energy to face  

the energy deficit crisis; it occupies a leading position in the 
Africa and Middle East [13]. Egypt owns natural resources and 

tremendous potentials of wind energy in almost all regions 
[14]. The New and Renewable Energy Authority (NREA) in 
collaboration with National Laboratory Risoe (Denmark) has 
worked extensively over the last years to create a 
comprehensive wind atlas for Egypt. Egyptian wind atlas, 
given in Fig. 1 [15], indicates that there are several promising 
areas in the Suez Gulf and on both sides of the Nile with high 
wind speeds, which could be ideal for setting up major wind 
power generation projects [16-19]. Other studies on the wind 
characteristics and its effectiveness [20-23] have suggested 
additional locations for wind power plants along the 
Mediterranean and Red Sea coasts in Egypt. Table 1 shows the 
wind farm projects that were implemented in Egypt (basically 
in the Red Sea region). It explores the installed capacity of 
each project, the number of turbines, and the power of each 
turbine [24]. 

1.3.  Contributions of paper 

This study focuses on the potential of wind energy to 
provide an economic analysis of wind energy in Egypt. In a 
number of studies, the cost of wind energy was calculated on 
the basis of present value cost (PVC) [25-27]. In this paper, a 
levelized cost of electricity (LCOE) method is utilized for 
wind energy economic analysis [28-29]. The effect of 
changing selected input values such as capacity factor, capital 
cost and operation and maintenance (O&M) cost on LOCE is 
thoroughly discussed. 

1.4. Paper layout 

The paper organization is presented as follows: Section 2 
provides the levelized cost of energy (LCOE). Section 3 
introduces the characteristics of wind energy at different 
regions in Egypt. Section 4 presents the environmental cost 
analysis and the results of analysis for three windy regions in 

Egypt. Finally, the conclusion of the paper is listed in section 5. 

Fig.1.  Egyptian wind speed atlas estimated at 50 m above ground level [15]. 
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Table 1.  The projects of wind farms in Egypt. 

No. of project 
No. of 

turbines 
Wind turbine 
power(kW) 

Total nominal 
power (MW) 

Financing country 

Zafarana-1 50 600 30.00 Netherlands 

Zafarana-2 55 600 33.00 Germany 

Zafarana-3 46 660 30.36 Netherlands 

Zafarana-4 71 660 46.86 Germany 

Zafarana-5 100 850 85.00 Spain 

Zafarana-6 94 850 79.90 Germany 

Zafarana-7 142 850 119.85 Japan 

Zafarana-8 142 850 119.85 Netherlands 

Gulf of El-Zayt-1 20 2000 40.00 Spain 

Gulf of El-Zayt-2 100 2000 200 Spain 

Ras Gharib 125 2100 262.5 United States 

 

2. Levelized Cost of Energy (LCOE) 

The levelized cost of energy (LCOE) metric replicates the 
unit energy cost, considering capital, operation and funding 
costs, over the project lifetime. The metric usually determines 
the expense of the lifetime of the energy system under 
consideration (such as wind, solar and nuclear power sources), 
divided by the assumed lifetime production of energy to 
deliver as an output [30]. In other words, it is the cost per unit 
energy. The following are the main inputs of this method [31]: 

• Initial cost of investment expenditures (I) 

• Maintenance and operation expenditures (M&O) 

• Fuel expenditures (if applicable) (F) 

• The project discount rate  (r)  

• The life of the system (n) 

• The electrical generation in the year (E)  

LCOE =
∑ '()	+,(-(.)	/012(('45)	78	)7)01	97-)-	7/(,	1:8(	):;(
'()	+,(-(.)	/012(	('45	)78		(.(,<=	<(.(,0):7.	7/(,	1:8(	):;(

							(1)                                                                    
 

LCOE = ∑ ?@ABCABDA
(EBF)A

GH
IJE /	∑ ? LA

(EBF)A
G																														(2)			H

IJE 																																	

The capital cost of wind energy includes the following 
major categories as illustrated in Fig. 2: 

§ Turbine cost: comprising tower, blades and 
transformer. 

§ Civil works: comprising foundations for the towers 
and construction costs for preparation of site. 

§ Grid connection costs: comprise substations and 
transformers, and also the connection to the regional 
distribution system or transmission lines. 

§ Other capital costs: include the control systems, 
buildings construction, project consultancy, 
engineering and management costs, etc. 

The cost of operation and maintenance (O&M) is 
considered the most critical component of the overall 
investment cost of wind energy projects. This cost includes 
insurance, replacement parts, management, renting of the site, 
consumables, and utility side expenses. Given the rapid 
development of the wind turbine technology, O&M 
specifications are considerably, relying on the turbine 
sophistications and age. 

The cost of wind power is closely associated with the 
respective capacity factor (CF) at the production sites [32], 
while the CF depends on the characteristics of the wind 
resource at each production site and the turbine technical 
characteristics. 
Hence, the merits of LCOE include the following points:  
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§ Measure value across the longer term, showing 

estimated life-cycle costs. 
§ Highlight opportunities for individuals and 

community to create various project scales 
(community, facility or commercial). 

§ Assess viability of having wind power projects on an 
economic basis, compared to utility energy rates and 
prices. 

3. Wind Energy Characteristics at Different Regions in 
Egypt 

This paper divides Egypt's overall land into three different 
regions according to their range of wind speeds. Based on wind 
speed data, an assessment of the wind energy capacity and cost 
estimate of each region is carried out. The first region (Region 
I) with high wind speed range (8 -11 m/s) occurs at Abo drag,  

 

 

 

Zafarana, Ras Gareb and Gulf of El-Zayt is shown in Fig. 3. 
As per the annual average wind speed (AAWS) shown in Fig. 
4, the windiest region among these locations is Gulf of Elzayt 
(AAWS is 10.06 m/s) and the least blowing wind is at Ras 
Ghareb (AAWS is 8.25 m/s). The second region (Region II) 
comprising medium wind speed range (6-8 m/s) locations,  

covers the  Eastern  and  Western  parts  of  the  Nile,  Marsa 
Matrouh, Sidi Barrani, El-Suez and Hurghada, as shown in 
Fig. 5. AAWS of these sites is shown in Fig. 6 where the 
windiest region among these locations is at El-Suez (AAWS 
of 6.16 m/s) and the least wind occurs at Sidi Barrani (AAWS 
is 6.02  m/s). 

Finally,  the low wind speed region (Region III)  (≤ 6 m/s) 
refers to Mediterranean Sea and South Upper Egypt locations; 
this region includes: Alexandria, Port- said, Qena, Aswan [34] 
as highlighted in Fig. 7. AAWS of these sites are detailed in 
Fig. 8; the windiest site among these locations is Alexandria 
(AAWS is 5.34 m/s) and the least windy site is at Aswan 
(AAWS is 4.92 m/s). 

 
Fig. 3. Monthly average wind speed of Zafarana, Abo Darag, Julf of Elzayt and Ras Ghareb. 
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Fig. 2. Capital expenditures for the wind reference project [33]. 
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Fig. 4. Annual average wind speed of Zafarana, Abo Darag, Julf of Elzayt and Ras Ghareb. 

 

 
Fig. 5. Monthly average wind speed of Marsa Matrouh, Sidi Barrani, El-suze and Hurghada. 

 

 
Fig. 6. Annual average wind speed of Marsa Matrouh, Sidi Barrani, El-suze  and Hurghada. 
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Fig. 7. Monthly average wind speed of Alexandria, Port-said, Qena, Luxor, Aswan. 

 

 
Fig. 8. Annual average wind speed of Alexandria, Port-said, Qena, Luxor, Aswan. 

To calculate the cost per kWh of wind energy, three 
different kinds of wind energy conversion technology WECT, 
namely: Nordex N80 (2500kW), EnerconeE33 (330 kW) and       

Gaia (11kW) are chosen for these three regions, respectively. 
Table 2 summarizes the technical details of the selected wind 
turbines. 

Table 2. Technical specifications of the selected wind turbines. 

Wind turbine Rated power 
(kW) 

Diameter (m) Swept area 
(𝐦𝟐) 

Cut in speed 
(m/s) 

Rated speed 
(m/s) 

Cut out speed 
(m/s) 

 Nordex N80 2500 80 5027 4 15 25 
Enercon E33 330 34 876 3 12 28 

Gaia 11 13 133 3.5 9.5 >25 
 

Equation (3) presents the output mechanical power of  

a wind turbine [35] 

𝑃Q = 0.5	𝜌	𝐴	𝑉XY𝐶[(	𝛽, 𝜆)																																										(3)																																																																																																

The relationship between tip speed ratio (λ)  and blade 
pitch angle (β) is defined as [36]: 

𝐶[(	𝛽, 𝜆) = 0.5176c
116
𝜆d

− 0.4𝛽 − 5g
hiE jk⁄

+ 0.0068𝜆					(4) 
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Fig.9. Power coefficient with tip speed ratio. 

			 E
jk
= E

jBo.opq
− o.oYr

qsBE
																																																													(5) 

  
The tip speed ratio can be defined as: 

𝜆 = t	uv
wx	

																																																																																							(6)                                                                                                    

Where: R is the rotor blade radius, ω)	is	turbine angular 
speed. Fig. 9 demonstrates the graphical representation of the 
performance coefficient	(C+) with respect to continuously 
varying of tip speed ratio (λ) over different discrete values of 
blade pitch angle (β) [37]. 

4. Environmental Cost Analysis 

To assess the environmental costs, the needed financial and 

technical information are capital costs, fixed operation and 
maintenance costs, capacity factor data, assumed lifetime and 
discount rate. A sample of recently examined projects in the 
United States suggested the limits for capital, operation and 
maintenance costs shown in Figs. 10-11. The cost of capital 
and energy generated by small wind turbines is still higher than 
large-scale wind turbines as shown in Fig. 11. The capacity 
factor curves for different wind speed of the selected wind 
turbines are shown in Fig. 12.  

The discount rate is used to calculate the present value of the 
net cash flows that exist over the wind turbine's lifetime 
(typically 20 years) and assumed to be 8% in the base study of 
the LOCE calculations. 

  
Fig.10. Recent capital cost estimates for wind energy technology [40]. 
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Fig. 11. Operation and maintenance (O&M) cost for wind energy technology. 

  

 
Fig 12.  Capacity factor curves for different wind speed of the selected wind turbines. 

The variation in the LCOE $/kWh with the capacity 
factors for the selected WECT (Nordex, Enercon and Gaia) is 
presented in Table 3. The cost per unit energy decreases from 
0.052 $/kWh to 0.035 $/kWh for Nordex WECT and from 
0.121$/kWh to 0.077 $/kWh for Enercon WECT. Similarly for 
GaiaWECT, the charge decreases from 0.941$/kWh to 0.198 
$/kWh.  

In another prospective, a key consideration for utility scale 
generation technologies is the impact of the availability and 
capital cost on LCOE values. The LCOE is altered by different 
values capital costs from 0.0365 to 0.039 $/kWh, 0.082 to 
0.101 $/kWh and 0.215to 0.426 $/kWh for regions I, II and III 
respectively, as shown in Table 4. The economic analysis 
carried out in this paper does not take into account the increase 
in operations and maintenance costs. Generally, the O&M 
costs for newer WECT are low, but these expenses increase 
with the decrease in the useful lifetime of the WECT. The rate 
of increase depends on the wind condition of the location, the 

configuration of the turbine and the efficiency of the 
components. The LCOE is affected by different values of 
capital costs; it spans from 0.035 to 0.041 $/kWh, 0.088 to 
0.095 $/kWh and 0.314 to 0.326 $/kWh for regions I, II and III 
respectively, as shown in Table 5. 

The results of this analysis for three windy regions in 
Egypt are presented in Figs. 13-15. From these figures, it can 
be observed that, all selected input parameters are sensitive for 
LCOE. The capacity factor has a very positive effect on the 
LCOE, i.e. the LCOE decreases as CB values increase. This 
explains why a site with a high wind turbine capacity factor is 
desirable (economically). Typically, the increase of the capital 
and O&M costs have adverse impacts on the economic 
viability of wind energy system development as the LCOE 
increases. In fact, it can be observed from Figs. 13-15 that, the 
capital and O&M costs have insignificant impacts on the 
LCOE. 
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Table 3. The impact of capacity factor on the LCOE for windy regions in Egypt. 

  Table 4. The impact of capital cost on the LCOE for windy regions in Egypt. 
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  Table 5. The impact of O&M cost on the LCOE for windy regions in Egypt. 

 

Fig 13.  Impact of selected input parameters on the wind energy cost for region I. 
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Fig 14.  Impact of selected input parameters on the wind energy cost for region II. 

 

 Fig 15.  Impact of selected input parameters on the wind energy cost for region III. 
5. Conclusion  

In this paper, wind energy characteristics and LCOE  
calculation for different regions in Egypt are investigated. 
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been chosen to investigate wind power economic viability as 
shown in Tables 13–15 based on this analysis. After analyzing, 
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1- In the first region, wind energy is economically 
more feasible compared to the second region, and in  
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0.041$/kWh, 0.121 to 0.095 $/kWh and 0.941 to 
0.326 $/kWh respectively for regions I, II and III. 

5- The sensitivity analysis shows that, increasing the 
wind turbine capacity factor can have a positive effect 
on the LOCE of the electricity produced by the 
WECS. 

Increasing capital and O&M costs has a negative impact 
on the LOCE of the electricity produced by the WECS. 
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