MEC-Based Modelling of Claw Pole Machines: Application to Automotive and Wind Generating Systems

Amina Ibala, Rabeb Rebhi, Ahmed Masmoudi‡

* Research Unit on Renewable Energies and Electric Vehicles
University of Sfax, Sfax Engineering School, P.O. Box W, 3038 Sfax, Tunisia

‡ Corresponding Author; Tel: +216 98 906 117, Fax: +216 74 275 595, e-mail: a.masmoudi@enis.rnu.tn, kam-ali@lycos.com, fbouchafa@gmail.com

Received : 03.10.2011 Accepted: 06.10.2011

Invited Paper

Abstract- The paper deals with the development and the finite element validation of the magnetic equivalent circuits (MECs) of three claw pole topologies. These are considered as viable candidates for automotive and wind generating applications. The first concept is the conventional claw pole alternator, the second claw pole topology has a DC-excitation winding in the stator, rather than in the rotor in conventional machine, and the third claw pole concept is a one-phase machine with claw pole in the stator and PM excitation in the rotor. The proposed MECs consider both no-load and loaded armature operations. It also accounts for the saturation of the magnetic circuit. The resolution of the established MECs is carried out using the Newton-Raphson algorithm. A validation of the proposed MECs is achieved considering a comparison between their results and those yielded by 3D finite element analysis.

Keywords- claw pole machine; automotive and wind generating systems; magnetic equivalent circuit; Newton-Raphson algorithm; validation; finite element analysis.

1. Introduction

In recent years, many efforts have been focused upon the modelling of new topologies of electric machines. The major reported solutions consider analytical models which are generally validated by finite element analysis (FEA) or by experiments of by both. The most considered analytical model is the one based on the magnetic Ohm law, leading to the magnetic equivalent circuit (MEC).

The increasing interest in MECs is due to the low CPU-time required for their resolution, which represents a crucial issue especially with the topological complexity of novel machines.

One of the complex topologies is the claw pole generator; commonly integrated in automotive power generating systems. Its popularity is mainly due to the heteropolar topology of its rotor which offers the possibility of integration of a high pole pair number in a low volume leading to interesting generation capabilities.

Other claw pole topologies are currently given an increasing attention as far as they could be integrated in other applications, such as wind generating, hybrid propulsion systems of road vehicles, and so on.

Within this trend, the present paper is devoted to the MEC modelling of three claw pole concepts, which are:

- Concept with claw poles and DC excitation in the rotor [1,2,3,4].
- Concept with claw poles in the rotor and a DC excitation in the stator [5].
Concept with claw poles in the stator and a PM excitation in the rotor \([6,7,8]\), which could be integrated in wind generating systems.

A numerical procedure based on the Newton-Raphson algorithm is proposed for the resolution of the proposed MECs. Finally, a validation of the proposed MECs is carried out considering a comparison MEC/FEA.

2. Description and Flux linkage of the Studied Claw Pole Concepts

2.1. Concept with Claw Poles and DC Excitation in the Rotor

The first claw pole concept exhibits the same topology as the conventional claw alternator. Fig. 1 shows a layout of such a concept.

![Fig. 1. Layout of the first claw pole concept.](image)

Figure 2 illustrates the main flux path through the magnetic circuit of the first concept. Such a path is described as follows:
- axially in the rotor magnetic circuit part surrounding the shaft
- radially in the rotor north plate
- axially and radially in the north rotor claws
- radially in the air gap to the stator teeth
- circumferentially in the stator yoke
- radially in the air gap
- axially and radially in the two adjacent south claws
 - radially in the rotor south plate
 - axially in the rotor magnetic circuit part surrounding the shaft

![Fig. 2. Main Flux path through the magnetic circuit of the first claw pole concept.](image)

2.2. Concept with Claw Poles in the Rotor and a DC Excitation in the Stator

Figure 3 shows an exploded view of the second claw pole concept.

![Fig. 3. Exploded view of the second claw pole concept. Legend: (1) magnetic ring, (2) claws, (3) stator yoke, (4) lamination, (5) armature winding, (6) field winding, (7) magnetic collector.](image)

The flux linkage between stator and rotor in the second claw pole concept is characterized by two types of paths, such that:
- 2D flux paths which are considered as homopolar leakage fluxes
- 3D flux paths which represent the useful flux. These are illustrated in Fig. 4 and are described as follows:
 - axially in the stator yoke
 - radially down through the magnetic collector and the first lateral air gap
 - radially then axially in the magnetic ring
 - axially and radially in the north claws
 - radially up in the main air gap and in the stator teeth
2.3. Concept with Claw Poles in the Stator and a PM Excitation in the Rotor

Figure 5 shows an exploded view of the third claw pole concept. It could be integrated in wind generating systems [12].

Figure 6 illustrates the main flux path through the magnetic circuit of the third concept. Such a path is described as follows:

- axially in the stator core back
- radially down through the stator flanks
- circumferentially in the stator lamination
- radially down in the stator teeth and the main air gap
- axially and radially in the two adjacent south claws
- axially then radially in the magnetic ring
- radially up through the second lateral air gap and the magnetic collector on the other side of the machine.

\[
R = \frac{1}{\mu_0 \mu_r} \frac{L}{S}
\]

where μ_0 is the permeability in the air, μ_r is the relative permeability, L is the flux path average length and S is the section area.

In the case of saturated material, the reluctance turns to be non-linear function of the flux, such that:
\[R = \frac{L}{\Phi} H\left(\frac{\Phi}{S}\right) \]

(2)

where \(\Phi \) is the magnetic flux and \(H(B) \) is the analytical expression of the magnetic field \(H \) versus the flux density \(B \), which is expressed as follows:

\[B = \frac{\Phi}{S} \]

(3)

3.2. MECs of the Claw Pole Concepts

Figures 7, 8 and 9 show respectively the proposed MECs of the first, the second and the third claw pole topologies, where the saturation as well as the armature magnetic reaction are taken into account.

4. Numerical Procedure to Solve the MECs of the Claw Pole Concepts

4.1. Case of no-Load Operation

In a first step, the resolution of the proposed MECs treats the no-load operation. Generally speaking, if a network includes \(b \) reluctances and \(n \) nodes, the number of independent loops is equal \(m=b-n+1 \).

Let us consider, for instance, the MEC of the first claw pole concept, shown in Fig. 10, where the orientation of branches and the loops are indicated.

One can notice that the MEC includes 18 branches and 9 nodes. Therefore, the resolution of the network can be reduced to 10 independent loops, as illustrated in Fig. 10.
where \(U \) and \(\Phi \) are the branch MMF and flux vectors, respectively.

Thanks to the topological matrix \(S \), one can obtain the loop MMF vector \(F \) as follows:
\[
F = SU
\]
(5)

The node law yields:
\[
\Phi = S^T \Psi
\]
(6)

where \(\Psi \) is the vector of loop fluxes.

Combining Eq. (4) and Eq. (5) yields:
\[
F = SR\Phi
\]
(7)

Considering Eq. (6), and in the case of nonsaturated magnetic circuit, the loop fluxes are calculated as follows:
\[
\Psi = (SRS^T)^{-1} F
\]
(8)

However in the case of saturated materials, the reluctances depend on the fluxes which are nonlinear. As a result, the inverse of matrix \(SRS^T \) cannot be calculated. In order to solve this problem, a vector \(C \) is introduced, such that:
\[
C = F - SRS^T \Psi
\]
(9)

The resolution of the reluctance model is achieved when all elements of vector \(C \) turn to be null.

The MEC resolution enables the assessment of the fluxes circulating in the different parts of the magnetic circuit and the computation of the no-load back-EMF, which is expressed as follow:
\[
E = \frac{1}{\sqrt{2}} N_a \omega \Phi_m
\]
(10)

where \(N_a \) is the number of turns per armature phase, \(\omega \) is the angular frequency and \(\Phi_m \) is the maximum flux crossing a phase which is assessed using the MEC.

4.2. MEC Resolution Under Load Operation

The resolution of the MECs could be extended to the case of load operation. Claw pole topologies are considered as salient so that including the effect of the armature magnetic reaction in both q-
and d-axis is necessary. This said, it is generally assumed that the saturation along the q-axis is negligible compared to the d-axis one. Therefore, a constant stator transverse inductance is defined.

The magnetic circuit parts located in the d-axis are saturated, so that the corresponding reluctances turn to be a nonlinear function of the fluxes. Then, a MEC accounting for the d-axis armature reaction is considered in order to find out the flux through the involved parts of magnetic circuit. Of particular interest is the linkage flux which allows the determination of the d-axis component of the back-EMF using Eq. (10).

The armature magnetic reaction in the d-axis is modelled by the MMF, coloured in red in the MECs of three claw pole concepts. Such MMF produces a flux circulating through the magnetic circuit in an opposite direction to the one of the field flux.

Under load operation, the back-EMF phasor could be expressed in terms of its d- and q-components, as follows:

\[
\vec{E} = \vec{E}_d + \vec{E}_q
\]

\[
\begin{align*}
||\vec{E}_d|| &= E_d (I_f, I_d) \\
||\vec{E}_q|| &= L_q \omega I_q
\end{align*}
\]

where \(I_d\) and \(I_q\) are the armature current d- and q-components, and where \(I_f\) is the field current.

Furthermore referring to Blondel model, the back-EMF can be expressed as follows:

\[
\vec{E} = R\vec{I} + \vec{V} + j\sigma \omega \vec{I}
\]

where:
- \(I\) and \(V\) are the armature current and voltage phasors, respectively;
- \(R\) and \(\sigma\) are the phase resistance and leakage inductance, respectively.

Combining both expressions of the back-EMF, one can draw the phasor diagram of the loaded claw pole machine, considering the case of a resistance in the armature, as illustrated in Fig. 11.

Referring to Fig. 11, and accounting for Eq. (11) and Eq. (13), one can establish the armature equations within the d- and q-axis, as follows:

\[
\begin{align*}
RI \cos(\psi) + l_\sigma \omega I \sin(\psi) - E_d &= 0 \\
-RI \sin(\psi) + l_\sigma \omega I \cos(\psi) + E_q &= 0
\end{align*}
\]

where both \(\psi\) and \(E_d\) are functions of the linkage flux which is calculated using the MEC, according to the numerical procedure whose bloc diagram is shown in Fig. 12.

5. Case Study

A comparison between the results yielded by the MECs and the ones computed by finite element method (FEM), considering the three claw pole concepts, is treated in this section. The comparison is focused upon the back-EMF at no-load operation which is plotted versus the field current for the fist and the second topologies. The obtained results are illustrated in Fig. 13 and in Fig. 14.
6. Conclusion

The paper was aimed at the principle of operation and the modelling of three claw pole topologies. These could be integrated in automotive and wind generating systems. First, an analysis of the flux paths through the magnetic circuits of the treated concepts was presented and analysed. Then a general approach to build up the magnetic equivalent circuit (MEC) of a claw pole concept was proposed. Following the establishment of the MECs of the three claw pole concepts under study, a numerical procedure based on the Newton-Raphson algorithm allowed the resolution of the proposed MECs, leading to an assessment of the fluxes circulating in the different parts of the magnetic circuit.

A comparison between the results yielded by the MEC and those computed by the FEM, was focused on the no-load back-EMF in the case of the first and second claw pole concepts. The core-back flux versus the armature ampere-turns has been the subject of the comparison between the results of the MEC and those yielded by the FEM.

It has been found that the results obtained following the resolution of the proposed MECs are in agreement with those computed by the FEM.

Acknowledgements

The works related to the third claw pole machine have been developed in the Newcastle Electric Drives and Machines Group of the University of Newcastle Upon Tune under the supervision of Prof. Alan. G. Jack.

References

