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Abstract- Creative inspirations that marked the great moments of human genius are linked to seemingly insignificant details: 

an Apple for Newton, a Bath for Archimedes, and many other impressive examples. In this paper, we introduce a new 

controller design inspired from the functioning principle of "The zipper" in order to force the outlet temperature of the 

parabolic solar collector to track a desired reference. The proposed control scheme is based on the Lapunov stability analysis 

as well as the zipper functioning principle. A potential advantage of this latter consists in the possibility of extending the 

designing method to other systems governed by hyperbolic PDE and/or uncertain ODE models. Numerical simulations are 

done with real process parameters to show the effectiveness of the proposed controller.   

Keywords Parabolic Solar Collector (PSC), the Zipper Controller (ZC), Thermal Energy. 

 

1. Introduction 

Renewable energies are no longer considered as an 

alternative for electrical energy production, but as a fatality 

imposed by the growing demand and resources limitations. 

Nowadays, solar energy is promoted to be an environment-

friendly resource, due to its cleanliness and sustainability [1]. 

But, since photovoltaic systems are always criticized for their 

expensiveness and low rentability, solar thermal energy has 

become more convincing [2]. In fact, several solar thermal 

power plants have been constructed or are under construction 

worldwide.  

In solar thermal power plants, the energy conversion 

takes place in two stages: "solar-energy into thermal-energy" 

and then "thermal-energy into electrical-energy". In this 

context, solar collector’s technology is adopted to focus the 

radiant solar energy onto a receiver that absorbs and 

transforms it into heat. Afterwards, the thermal energy is 

used for powering a conventional thermal cycle to generate 

electricity [3].  

In recent years, parabolic solar collectors have taken the 

lead upon a large range of other existing solar collectors and 

became the subject of many studies because they offer the 

possibility to control the produced thermal energy. 

Nevertheless, the complexity of the partial differential 

equation model of these systems remains an arduous 

constraint for the achievement of the control design. In fact, 

many approaches have been proposed in the literature to deal 

with this problem. These approaches can be classified, 

according to their principles, into two categories: "Reduce 

Then Design (RTD)" and "Design Then Reduce (DTR)" [4] 

[5]. The former consists in making some simplifications to 

reduce the complexity of the PDE model before the 

controller design. The most used theory for this is space 

discretization in which many methods are applied such as: 

the finite difference method, the finite element method and 

the finite volume method [6], [7]. While the latter uses the 

PDE model directly in the controller design, which is based 

on infinite dimensional description by using Hilbert and 

Banache spaces [8], [10]. After that, the resulting design 

scheme is reduced with a view towards its implementation.  

The main drawback of RTD techniques is that the 

discrete linear model used to describe the original PDE is 

unable to represent accurately the behavior of the real 

process due to the loss of information in the discretization 

stage. Hence, the resulting controller may fail to achieve the 

desired performances. Indeed, the DTR techniques seem to 
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be more accurate by using the original PDE model in the 

controller synthesis, but the fastidious analytic development 

remains the major constraint in their application.  

The main novelty and contribution of the present work 

consists of a new method: taking advantage of the simplicity 

of the RTD method and benefitting from the accuracy of the 

DTR method by ensuring an optimization of the 

"Complexity/Accuracy" balance. The key idea of our design 

consists in providing an equivalent system that represents 

accurately the PDE system by using the finite difference 

method (RTD) taking into account the truncation errors 

resulting from the spatial discretization. Then, we introduce 

the principle of "The Zipper Controller" based on the 

resulting model.  

The remainder of this paper is organized as follows: 

section (2) describes the parabolic solar collector model. In 

section (3), an equivalent uncertain state-space model is 

presented. Section (4) is devoted to the zipper controller 

design. Simulation tests are presented in section (5) to 

evaluate the controller performances. Finally, some 

concluding remarks are given in section (6).  

2. Process Description and Modelling 

The parabolic solar collector is an engineering process 

which aims to convert “solar-energy” into “thermal-

energy”, an overall view of this system is given in Fig. 1. 

The receiver mirrors are selected to be parabolically-curved 

in order to focus the incident beams of solar radiation onto 

the focal line of the parabola thereby heating the thermal oil 

flowing through the absorber pipe. This latter is used, 

thereafter, in a heat exchanger to produce steam. The steam 

so produced can be used in a turbine [11] to drive an electric 

generator and/or supply the thermal energy for powering a 

conventional thermal cycle.  

In most applications of parabolic solar collector a sun 

tracking system is used to maximize the solar absorption. 

However, the control of the outlet oil temperature remains a 

major constraint, due to the fact that the primary energy 

source (solar radiation) cannot be manipulated. To overcome 

this problem, a commonly used technic consists in acting on 

the oil flow rate by controlling the pump in the inlet of the 

pipe [12]. The physical model describing the relationship 

between the oil flow rate and the temperature evolution along 

the pipe is derived from the energy balance principle [13], in 

which the heat transport phenomena is described by the 

following hyperbolic PDE model: [3] 

( , ) ( ) ( , )
( ) (1)

T t x q t T t x
I t

t s x c s

 



 
 

 
 

Where :       

 ( , )T t x : describes the temperature distribution along the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Parabolic Solar Collector 

receiver pipe. 

 ( )I t : is the source term which corresponds to the solar 

radiation.  

 ( )q t : is the control input which corresponds to the oil 

flow rate in the inlet.  

   : describes the optical characteristics of the reflector 

mirrors.  

 c : describes the thermal properties of the oil flowing 

through the receiver pipe.  

  0, lx s : describes the dimensions of the receiver 

pipe (the longitudinal position and the cross sectional 

area respectively). 

Due to the saturation constraint of the pump, and, in order to 

avoid a leakage of the thermal oil caused by the 

overpressure. Two restrictions are imposed on the process:  

 The control input is subject to the pump saturation limits, 

i.e.  

min max0 ( )u u t u    

 The difference between the inlet and the outlet 

temperature should not exceed an admissible limit.  

Notation. For clarity and simplicity, the temperature 

( , )T t x  is denoted by ( )tT x  throughout the rest of this 

paper. 

3. Uncertain State Space Synthesis 

The finite difference method is one of the most useful 

approaches to deal with the PDE model complexity [14], 

[15]. In this approach, the PDE model is semi-discretized to 

1-Reflector 

2-Absorber Pipe 

3-Metal Construction 

4-Pipe Installation 
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a set of ordinary differential equations (ODEs) using the 

following identity:  

( ) ( ) ( )
(2)t t tT x T x T x x

x x

   


 
 

Where:  

 x : denotes the spatial step size.  

The above identity is derived from the Taylor Series 

Expansion (TSE) of ( )tT x  in a given space vicinity x , as 

follows:  

n

i=2

ii i

i

( )( 1)( )
( ) ( ) (3)

i!

tt
t t

T xxT x
T x x T x x

x x

 
    

 
 

Or equivalently : 

n

i=2

ii i-1

i

( ) ( ) ( ) ( )( 1)
(4)

i!

t t t tT x T x T x x T xx

x x x

     
 

  


 

 Let us denote by R( )x  the bias derived from the rest of 

the TSE, which is defined as follows: 

n

i=2

in i-1
( )( 1)

R( ) (5)
i!

t
i

T xx
x

x

 





 
As it can be seen:  

0
R( ) 0 (6)lim

x
x

 
 

 

For simplicity, usually R( )x is neglected. However, this 

leads to a loss of information on the system’s behavior (due 

to the truncation error). To overcome this problem, all the 

previous works based on this method propose to choose x  

small enough in order to justify the negligence of R( )x  by 

satisfying the condition given by (6) or being close enough to 

the satisfaction of this latter and as a result the obtained 

model will be a high-order model, which leads to an 

increased computational cost. Furthermore, we can never 

achieve the accuracy of the real process despite the smallness 

of the spatial step size x .   

Proposition 3.1. To avoid the PDE model’s complexity and 

get more accuracy, we propose to consider R( )x  as an 

unknown parameter in our design, i.e. R( ) ?!x  .  

Consequently, the partial derivative of ( )tT x  with respect to 

" "x  given by (2) will become as follows:  

( ) ( ) ( )
R( ) (7)

UNCERTAIN

T x T x T x xt t t x
x x

  
  







 
Hereby, the PDE model (1) is equivalent to the uncertain 

ODE defined as follows: x  1 1,x x x    

 

The equivalent state space describing the uncertain ODE 

model (8) along the space horizon is obtained by choosing 

the following state variables: 

     n1x (x x )      with    x ( ( 1) )ti T l i x     

Obviously, the equivalent uncertain state space model can be 

rewritten as follows: 

= f ( ) + g( ) ( ) + ξ( )
(9)

= c
( )

x x x u t t

y x


 


 With: 

1 1g ( ) ξ ( )1

f( ) ( ) ; g( ) ; ξ( )

1 g ( ) ξ ( )n n

x t

x I t x t
c s

x t

 



  

    
    
        

     

 

c = (1 0 0)  

where: 

1 ( )
g ( ) ; ξ ( ) ( )i i

i i

x x q t
x t R x

s s


     

 

Two main features of the proposed method are worth 

mentioning. The first consists in its ability to ensure an 

optimization of the complexity/accuracy balance, by 

providing an equivalent uncertain state-space (USS) model 

which can describe accurately the real process with less 

complexity. The second one is the possibility of it being 

applied to describe all processes governed by a PDE model.  

In the next section, we introduce the zipper controller 

for the resulting uncertain state space model.  

4. Controller Design 

Uncertain systems are challenging in terms of robust 

control design. In this case of study, we seek to provide a 

suitable framework to design a robust controller which can 

handle effectively the system’s uncertainty derived from the 

truncation error.  

4.1. Baseline Control Scheme: 

The basic idea of the proposed method consists in confining 

the uncertain system ( )  between two well defined systems, 

i.e. 

t   0, Lt  : maxmin (10)( ) ( ) ( )      

Hereafter, we coincide ( )  at the desired reference, thanks 

to the inequality (10), by forcing min( )  and max( )  to track 

the same desired reference. Hereby, achieving the desired 

objective.  

The principle of the proposed idea is inspired from the 

functioning principle of the zipper as illustrated in Fig. (2)   

 
1 1 1

( ) ( ) ( )
( ( ) | ( ) | ) ( ) R( ) | (8)

UNCERTAIN

t
t x x t x x x x

dT x q t q t
T x x T x I t x

dt s c s s

 


  

        



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
C.A.Mosbah et al., Vol.6, No.3, 2016 

1103 
 

Fig. 2. Principle of the Zipper Controller 

Before proceeding, we propose to emphasize the main steps 

leading to the controller design:  

 Firstly, we must define the system bounds min( ) and 

max( ) . 

 Thereafter, we establish a matching relationship 

between the control laws making min( )  and 

max( ) converge to the desired reference in order to 

have ( ) coincide with it.  

 Finally, the stability analysis of the final control 

scheme is carried out by resorting to the classic 

Lyapunov theory.  

In this contribution, we will focus on the control design for 

our system as a study case. Thus, we provide some remarks 

for extending "the zipper principle" to other class of 

uncertain systems. 

 1st Stage: (Definition of the Systems Bound)  

The systems bound are formally defined in the following 

proposition. 

Proposition 4.1. Let 1( )  and 2( )  be two nonlinear 

systems defined as follows:  

1

= f ( ) + g( ) ( ) ξ

= c
( )

mx x x u t

y x


 



2

= f ( ) + g( ) ( ) ξ

= c
( )

mx x x u t

y x


 


 

Where: 

 ξm : is the upper bound of ξ( )| |t  i.e.  

| ξ( ) | ξmt   

Then, the uncertain system (9) fulfills the following 

inequality: 

 

Proof:  
Using the fact that the system uncertainty is a bounded 

function, we have: 

      

 

Or equivalently:  

ξ ξ( ) ξ (13)m mt    

By adding the term [ f( ) g( ) ( )x x u t ] to the inequality (13), 

we obtain:  

 
f( ) g( ) ( ) ξ f( ) g( ) ( ) ξ( ) f( ) g( ) ( )

ξ (14)

m

m

x x u t x x u t t x x u t      


  

Or equivalently:  

x { min( ) } x { ( ) } x { max( ) } (15)  

By integrating the inequality (15) and multiplying by"c" , 

we obtain:  

 

y { min( ) } y { ( ) } y { max( ) } (16)  

 

Which concludes the proof. 

 2nd Stage: (Definition of the Matching Relationship) 

Firstly, we must find the control laws ensuring the 

convergence of both min( ) and max( )  to the same desired 

reference.  

By resorting to Lyapunov theory, we can easily reach this 

aim. In the following theorem we state the main result.  

Theorem 4.1. For nonlinear systems min( )  and max( ) , If 

the following control laws are applied (respectively):  

min

max

1
( f( ) ξ ) (17)

g( )

1
( f( ) ξ ) (18)

g( )

r m

r m

u x x e
x

u x x e
x





   

   

 

Where: 

:


 R  is a scalar gain used to impose a selective 

degree of robustness and/or stability. 

 

Then, these systems exhibit asymptotic reference tracking. 

Proof:  

The proof is omitted for brevity. We can easily obtain this 

result by resorting to the classic Lyapunov method. 

 

Thereafter, to establish the matching relationship we propose 

to discuss the definition of the tracking error as follows: 

 

maxmin

= f ( ) + g( ) ( ) ξ = f ( ) + g( ) ( ) ξ( ) = f ( ) + g( ) ( ) ξ
( ) ( ) ( ) (11)

= c = c = c

m mx x x u t x x x u t t x x x u t

y x y x y x

  
  

  
  

  
 

ξ( ) | ξ (12)| mt 
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 If the tracking error is negative (i.e. ry y ): in this 

case, we must apply minu  in order to force min( )  to 

converge to the desired reference. Hereby, we also 

force the convergence of ( ) via the inequality (11).  

 

 If the tracking error is positive (i.e. ry y ): in this 

case, we must apply maxu  in order to force max( )  to 

converge to the desired reference. Hereby, we also 

force the convergence of ( ) via the inequality (11).   

Indeed, we can summarize the above discussions in the 

following proposition.  

Proposition 4.2. From the above discussions, we can define 

the matching relationship as follows: 

min

max

0
( ) (19)

0

u if e
u t

u f ei









 

Or equivalently  

1
( )

2
u t  [ min max1 2

u u  ] (20)  

Where: 

1

2

1 ( )
(21)

1 ( )

sgn e

sgn e













 

 3rd Stage:(Stability Analysis of the Final Control Scheme) 

As a consequence of the previous stages, we can now state 

the main contribution of this paper.  

Theorem 4.2. Consider the PDE system (1) under the 

equivalent USS representation (9), if the following control 

law is applied: 

1
( ) ( f( ) ξ ( ) ) (22)

g( )
r mu t x x sgn e e

x
     

Then, this system exhibits asymptotic reference tracking. 

Proof:  

From Theorem 1 and Proposition 3, the control law derived 

from "the zipper principle" can be obtained by substituting 

(17) and (18) in (20):  

1
( ) ( f( ) ξ ( ) ) (23)

g( )
r mu t x x sgn e e

x
     

Then, let ( )V t  be a positive definite function defined as 

follows:  

2

:

1
( ) ( )

2

V

V t e t





R R

 

Where ( )e t  is the tracking error defined as follows:  

( ) ( ) ( ) (24)re t x t x t   

The time derivative of ( )V t  is expressed as follows:  

( ) ( ) ( )

( ) (f( ) g( ) ξ - ) (25)r

V t e t e t

e t x x u x



  
 

By substituting (23) in (25), we obtain: 

 
2

( ) (ξ( ) sgn( )ξ ) (26)mV t e t e e     

As it can be seen:  

(ξ( ) sgn( )ξ ) (sgn( )ξ( ) ξ ) | | (27)m mt e e e t e    

And we have: 

(sgn( )ξ( ) ξ ) | | 0 (28)me t e   

Hereby, ( )V t  is semi-negative definite. Hence, we conclude 

the asymptotic stability for the predefined reference.   

5. Simulation Results 

In this section, we carried out simulations to evaluate the 

performances of the proposed control scheme under different 

conditions. Simulations are done with real values of process 

parameters (see Appendix A), which are those of the solar 

platform belonging to the Spanish research energy center 

(CIEMAT, Almería_Spain). The other simulation parameters 

are summarized in Tab.1. 

Figure (3) illustrates the functioning principle of the zipper 

controller for a step reference. To assess the reference 

tracking performances, we consider two reference signals 

characterized by a high dynamics; "staircase-reference" and 

"sinusoidal-reference". The obtained results are illustrated in 

Fig (4).  

 

Parameter Value 

Inlet Temperature 0 ( )T t  200°C 

Solar Radiation 900 W/m2 

Sampling Time For Simulation 36 s 

Number of discretization 20 

      Table. 1. Simulation Parameters 
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Fig. 3. Step Response 

Fig.4. Evolution of the PSC system for a "staircase" and "sinusoidal" references. (A, B) represents the reference 

tracking, and the applied oil flow rate (the control input). (C, D) describes the temperature evolution inside the pipe 

for both references. 

A 
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In order to assess the robustness of the zipper controller 

against modeling error and/or parameters variation, we 

consider a brutal change in the solar radiation caused by 

passing clouds, and we check the tracking performances of 

this latter. Indeed, we apply the solar radiation profile (5) to 

the parabolic solar collector (in the steady-state). Figure. 6 

shows the tracking error obtained by comparing the 

perturbed and non-perturbed system. As it can be seen an 

attenuation of the perturbation effects while approaching to 

the pipe extremity (the system output). Hereby, we conclude 

the robustness of our controller against perturbations.   

 

 

 

 

 

 

 

 

 

 

                     

To allow fair evaluation of the proposed control scheme, we 

carried out a comparative study with sliding mode controller    

(SMC) under the same conditions of solar radiation and inlet 

temperature. This comparison is based on the following 

performance criteria: 

 Integral of the absolute tracking error  (IAE) 

t

0

IAE e(t) dt= | |  

 Integral of the Time-weighted Absolute Error (ITAE)          
t

0

ITAE t e(t) dt= | |  

Fig. 5. Solar Radiation Profile 

Fig. 6. Robustness Test 
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                 Fig. 7. Controller Performance Indexes 

As it can be seen the zipper controller presents better 

performance indexes compared to the Sliding Mode 

Controller. 

6. Conclusion 

The ultimate aim of this work was to control the outlet 

temperature of a parabolic solar collector. This aim is 

reached thanks to the proposed modeling approach which 

helped us reduce the PDE model’s complexity by providing 

an equivalent model obtained using the finite difference 

method and taking into account the truncation error as an 

unknown parameter. Thereafter, a new controller design 

inspired form the functioning principle of the zipper as well 

as the Lyapunov stability analysis is introduced to reach the 

control objective. Simulations with real process parameters 

are carried out to illustrate the effectiveness of the proposed 

controller. The obtained results show good tracking 

performances and robustness against parameter variation and 

modelling errors.  
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Appendix A 

Symbol Description Value 

c  Specific Heat Capacity 1820 J.C-1.Kg-1 

0  Optical Mirror Efficiency 73% 

  Density 903 Kg.m-3 

  Mirror Optical Aperture 1.83 m 

l Pipe Length 142 m 

s Cross Sectional Area 0.0006 m2 

Table.2. PSC Model Parameters 
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