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Abstract- This study developed a mathematical model from consideration of the basic phenomena of heat transfer to predict 

the thermal behavior of a simultaneous charging, storage and discharging system during a heating cycle. A solution to the 

complex mathematical model was assumed in the form of a general equation for which the constants in the equation were 

determined. The mathematical model simulated an air packed bed storage system coupled to a flat plate solar collector which 

received intermittent solar radiation and supplied it in sinusoidal form to the packed bed. Finite Fourier series analysis with the 

first three harmonic terms was applied to the solution of the equation. Experiments were conducted by charging the packed bed 

system from a flat plate solar collector of area 1.5m2. The experimental results showed an average discharge temperature of 

50.75 oC over the period of 7.00 hr to 17.00 hr compared to the theoretically predicted average value of 50.40 oC. 

Keywords- Concrete, Packed-bed storage, Simultaneous, Charging and Discharging, Heating Cycle. 

 

1. Introduction 

The thermal energy storage (TES) can be defined as the 
temporary storage of thermal energy at high or low 
temperatures. The TES is not a new concept, and has been 
used for centuries. Energy storage can reduce the time or rate 
mismatch between energy supply and energy demand, and it 
plays an important role in energy conservation.  

Energy storage improves performance of energy systems 
by smoothing supply and increasing reliability. For example, 
storage would improve the performance of a power 
generating plant by load leveling. The higher efficiency 
would lead to energy conservation and improve cost 
effectiveness.  

Some of the renewable energy sources can only provide 
energy intermittently. Although the sun provides an 
abundant, clean and safe source of energy, the supply of this 
energy is periodic following yearly and diurnal cycles; it is 
intermittent, often unpredictable 

A thermal-storage unit in which particulate materials 
contained in an insulated vessel is known as packed bed 
(pebble bed or rock pile) storage unit. It uses the heat 
capacity of loosely packed particulate materials to store 
energy. Fluid, usually air, is circulated through the bed to add 
or remove energy.  

The most commonly used solids are rocks, concrete, 
clays and walls [1, 2]. The materials are invariably in porous 
form and heat is stored or extracted by the flow of a gas or a 
liquid through the pores or voids. Air systems have a number 
of advantages compared to those using liquid and phase 
transition heat transfer media. There are elimination in 
problem of freezing and boiling in the collectors and 
reduction in corrosion. Well-designed packed beds have 
several characteristics that are desirable for solar energy 
applications [9] such as: 

• The heat transfer coefficient between the air and the 
solid is high, which promotes thermal stratification. 

• The costs of storage material and container are low. 

• The conductivity of the bed is low when there is no 
air flow. 
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• The pressure drop through the bed is low. 

In analyzing packed bed storage, it should be recognized 
that both the solid and the air change temperature in the 
direction of air flow and generally there are temperature 
differentials between the solid and the air.  

Consequently, it becomes necessary to write separate 
energy balance equations for the solid and the air with the 
assumption that the forced air flow is one dimensional, 
system properties are constant, conduction heat transfer 
along the bed is negligible and heat loss to the environment 
does not occur, the thermal behavior of the solid and the air, 
respectively can be described by the following two coupled 
partial differential equations [3]. 

( ) ( )1 /    b b v f bA C dT dt Ah T Tρ ε− = −             (1) 

( )      f f f v f bA C mC dT Ah T Tρ ε = − − −               (2) 

The performance of packed-bed thermal storage unit is a 
function of the physical and thermal characteristics of the 
particles [3]. The physical parameters include average 
particle diameter; the void fraction (ε); the surface area shape 
factor (α). The thermal properties are the specific heat, 
thermal diffusivity, thermal resistivity, thermal conductivity 
and thermal coefficient of expansion. 

Besides high thermal durability, the storage concrete has 
to fulfill numerous requirements [4]. A high heat capacity 
and thermal conductivity will reduce the costs of the heat 
exchanger and thermal insulation. Furthermore the concrete 
itself has to be economical and easily workable. 

This study developed a mathematical model to 
determine the thermal performance of the packed bed storage 
system which utilized spherical shaped concrete imbedded 
with copper tube as the storage medium.  

Thermal storage in concrete relies on sensible heat 
storage where the stored thermal energy is defined by the 
heat capacity of the concrete and the temperature difference 
between the charged and the discharged states. 

Mathematical expressions for the temperature 
distribution in the solid and in the fluid have been derived as 
a function of time and packed bed height. Schumann’s model 
was performed on each of the fluid and solid phases yielding 
two coupled partial differential equations, two phase linear 
models. The two energy balance equations which explained 
the transfer of heat were:      

For Fluid Phase: 

( )
  

     
 

f f f f f f

v s f

A C T M C T
h A T T

t x

ρ ε ∂ − ∂
= + −

∂ ∂
        (3) 

For Solid Phase:  

( )
( )

 1  
   

S S s

v f s

A C T
h A T T

t

ρ ε− ∂
= −

∂
            (4) 

In Schumann’s two phase model, several assumptions 
were made. The transfer of heat by conduction in the fluid 
itself or in the solid itself was small and was neglected. In 

addition, the thermal losses to the environment were zero, 
adiabatic prism. The thermal constants were independent of 
the temperature.  

The transient response of a solid sensible heat storage 
system which was composed of a number of rectangular 
cross-sectional channels for the flowing fluid, connected in 
parallel and separated by the heat storage material was 
studied by Schmidt and Szego [8]. The equations which 
govern the transient response of the storage unit are the one 
dimensional conservation of energy equations for the moving 
fluid and the two dimensional transient heat conduction 
equations for the storage material.  

The governing differential equations were: 

For moving fluid:  

( )
 

         
f f

f f W f

T v T
C A hP T T

t x
ρ

∂ ∂ 
− = − 

∂ ∂ 
           (5) 

For storage material: 

2 2

2 2

1
      

s s s
T T T

t x yα

 ∂ ∂ ∂  
= +    ∂ ∂ ∂     

              (6) 

These two equations were solved by using finite 
difference techniques. A set of curves were presented to 
describe the dimensionless parameters which characterized 
the transient behavior. 

Riaz presented a simple one dimensional single phase 
conductivity model for transient analysis of a packed bed 
which accounts for the fluid convective motion, the air-rock 
heat transfer, axial bed conduction, and internal particle 
conduction in which air and rock are at the same temperature 
[7]. The model was:  

2

2
+    

s s
TT V T

t x x

α ∂∂ ∂
=

∂ ∂ ∂
             (7) 

Where,  

     
a a a

s s

V C
V

C

ρ

ρ
=               (8) 

And  

ks 
   

s

s s
C

α
ρ

=                (9) 

From this equation, if the conduction term is zero 

( 0),α = the equation is reduced to the convection motion of 

thermal wave traveling at the reduced velocity V.  

By comparing this model with the two phase Schumann 
model, Riaz noted that the results for both models almost 
coincide for sufficiently large values of dimensionless time 

( )
1

t 10 ;
2

> for small ( )t , the agreement is within 10%. He 

recommended, for the step response of time varying inlet 
temperature, that the combined effects of axial conductivity 
and air rock heat transfer be incorporated in both models. 
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The equivalent relationships were: 

For Schumann’s model: 

( )
2

1
  

s

eq v a a a

ki

h h v Cρ

= +            (10) 

For single phase model:  

( )
2

eq   
k  

a a a

s

v

v C
k

h

ρ
= +            (11) 

He concluded that the characteristics of the step 

response are presented in the form of generalized plots 

portraying the time space profile of the thermal waves. These 

curves represent so called thermoclines used for preliminary 

design purposes and for estimating the dynamic performance 

of packed storage systems. 

2. Methodology 

2.1. Test Procedures  

Fig. 1 shows the schematic of flat plate solar collector 

experiment. A forward curved blade centrifugal fan driven 

by a 373 W electric motor was employed to deliver air 

through the solar collector. Inlet air temperature at the 

entrance of the collector was controlled by thermostat.  

Three runs of air flow rates were conducted for the 

0.065m, 0.08 and 0.11m diameter spherical shaped concrete 

at the normal drop. The designed air flow rates were 

0.0094m
3
/s, 0.013m

3
/s, and 0.019m

3
/s per square meter of 

total cross sectional area of the storage tank. The 

corresponding superficial velocities were approximately 

0.1m/s, 0.15m/s and 0.20m/s. 

As soon as the air enters the storage tank into the packed 

bed, temperature measurements of air, ambient temperature, 

absorber plate temperature, collector air temperature at the 

inlet and outlet, concrete surfaces, copper tube surfaces, 

concrete core and inside of the copper tube were recorded at 

four levels via a data logger connected with the computer. 

These four levels were located at different heights above the 

base, 117.5cm, 235cm, 352.5cm, and 470cm. 

Temperatures were measured at the storage tank inlet 

and outlet and copper tube inlet and outlet through the 

copper-constantan thermocouples via a data logger connected 

to a computer. The measurements were taken automatically 

at an interval of 10 minutes for between 10 to 12 hours. 

Type J thermocouples were used for all tests performed. 

This Pico instrument was capable of 0.1
o
C resolution with 

readings displayed in 
o
C and capable of continuously 

recording and exporting data to a remote computer.   

The copper tube was of type L and of 0.00635m 

standard size. The outside diameter of the copper tube was 

0.02223m, the inside diameter was 0.01994m, wall thickness 

of 0.01143m, length 1.32m, number of copper tubes was 4 of 

two passes with radius 0.115m. The spherical shaped 

concrete was made of ratio 1:1.2:1.1 of cement, sand and 

gravel, respectively.  

The entry and exit lengths were 0.65 and 0.96m 

respectively, including the inlet plenum and outlet plenum 

height of 0.3 m each.  

In order to test the storage capacity of the spherical 

shaped concrete and the copper tube, the measurements were 

also taken during the night period when the simulated heat 

was no longer in supply to the packed bed. 

Upon analysis of all measuring equipment, the error 

calculated for these experiments was found to be ±5%.  

The air velocity profile in the duct was measured by a 

pitot-static tube. The air flow rate was the product of the 

average velocity and the duct cross-sectional area. Wind 

velocity above the solar collector was measured by a cup 

anemometer. Readings were done instantaneously. 

 

Fig. 1. Schematic of Flat Plate Solar Collector Experiment 

2.2. Modeling of Air Temperature Distribution in the Bed  

To predict the temperature distribution of air passing 

through the packed bed (spherical shaped concrete embedded 

with copper tube), mathematical expression from the 

fundamentals of heat and mass transfer was utilized. 

The following assumptions were made: 

• Physical and thermal properties of the fluid and 

solid material in the packed bed are constant 

• Uniform heat transfer coefficient 

• Mean velocity of the fluid in the packed bed is 

constant 

• Radial heat transfer for air and concrete were 

neglected 

• No chemical reaction 

• No mass transfer 

• Thermal gradients within the solid particles were 

neglected 

Consider a packed bed with a cross-sectional area (A) 

and length (L). The plane of the cross-section was divided 

into the area of fluid (Af) and area of the spherical concrete 
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together with area of copper tube (Ac,ct) since the void 

fraction affects the heat capacity of the packed bed.  

Voids fraction is defined as the ratio of area of the fluid 

(Af) to the total area of fluid plus area of the spherical 

concrete and copper tube (Af + Ac, ct) at the cross-section of the 

packed bed as follows: 

Void fraction or porosity 
( )

( )
,

f

f c ct

A

A A

ε =

+

         (12) 

In this analysis, an element with length ΔX was 

considered as indicated in Fig. 2. Asur is the surface area 

through which heat passes per unit length of the packed bed 

storage section (m
2
/m). 

The fluid superficial velocity through the bed ( )sl
V can 

be determined by the following equation since it takes the 

fluid a time, t∆  to move through a differential segment of 

the packed bed ΔX.  

f

sl

f

v X
V

A t

∆
= =

∆
                  (13) 

,

f
where v = Airflow per unit time 

Three fundamental equations can be written as follows 

to explain heat exchange between the air and packed 

materials in the elemental volume (Af + Ac, ct) ΔX in order to 

get the inlet air temperature distribution.  

 

Fig. 2. Schematic showing the segment of the mathematical 

model of the packed bed 

Also, another fundamental equation was derived for the 

temperature of air flowing inside the copper tube. 

• The energy equation of air moving a distance ΔX 

through the elemental part of the bed with inlet air 

temperature (Tf ) and an outlet fluid temperature  

(Tf +ΔTf  ) was presented using the following 

equations from the first law of thermodynamics for 

a closed system: 

Q w u= + ∆              (14) 

,where Q =Heat transfer rate 

w=Work transfer rate 

u∆ =The rate of change of internal thermal energy with 

time 

Since 0,w =  

f
Q u∴ = ∆               (15) 

,

f f
but u m C dT∆ =             (16) 

,

f f f
and m vρ=             (17) 

f f
u v C dTρ∴∆ =             (18) 

f f f f f
Q v C Tρ∴ = ∆             (19) 

,

f
where Q =Heat gain by the fluid (KJ/s)  

f
ρ =The average density of air entering the bed (Kg/m

3
)  

f
C = The specific heat capacity of air entering the bed 

(KJ/KgK)  

(i) The energy gain or loss to or from the spherical 

concrete materials and the copper tube which is 

proportional to their volume, the physical and 

thermal properties of the concrete and copper 

tube, and the change in the concrete and copper 

tube temperature over time interval  Δt. The 

energy equation for this case can be written as: 

      ,

c

c c c c

T
Q A X C

t

also

ρ
∆

= − ∆
∆

   
 (20) 

     

ct

ct ct ct ct

T
Q A X C

t
ρ

∆
= − ∆

∆    
 (21) 

• The exchange of heat between the air and the 

packed materials at the interface area was taken to 

be proportional to the surface area, (Asur) and also, 

to be proportional to the temperature difference. The 

energy transfer equation for this case can be written 

as: 

( )sur c fQ UA X T T= ∆ −            (22) 

( )sur ct fQ UA X T T= ∆ −            (23) 

The convective heat transfer coefficient may be obtained 

by applying the following formula: 

( )
,v f c ct

sur

h A A
U

A

+

=             (24) 

Given the stated assumptions, these three energy 

equations described the exchange of heat between the heated 

air and packed materials. 
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f c ct
Q Q Q Q= = =            (25) 

These quantities may be eliminated between these three 

major equations giving the following two equations:   

(i) For the fluid: 

( )f f f f sur c fv C T UA X T Tρ ∆ = ∆ −             (26) 

( )f f f f sur ct fv C T UA X T Tρ ∆ = ∆ −           (27) 

Rearranging equations 26 and 27 gives:  

f f f f

sur c sur f

v C T
UA T UA T

X

ρ ∆
= −

∆
          (28) 

f f f f

sur ct sur f

v C T
UA T UA T

X

ρ ∆
= −

∆
          (29) 

As ΔX tends to zero, a first partial differential equation 

evolved and can be written as: 

f

f f f sur f sur c

T
v C UA T UA T

X
ρ

∂
+ =

∂
          (30) 

f

f f f sur f sur ct

T
v C UA T UA T

X
ρ

∂
+ =

∂
          (31) 

(ii) For the spherical concrete material: 

( )c c c c

sur c f

A X C T
UA X T T

t

ρ− ∆ ∆
= ∆ −

∆
         (32) 

As 0t∆ → , the second partial differential equation is 

derived and can be written as: 

c

c c c sur f sur c

T
A C UA T UA T

t
ρ

∂
− + =

∂
          (33) 

(iii) For the copper tube: 

( )c c c c

sur ct f

A X C T
UA X T T

t

ρ− ∆ ∆
= ∆ −

∆
          (34) 

As 0t∆ → , the third partial differential equation is 

derived and can be written as: 

c

c c c sur f sur ct

T
A C UA T UA T

t
ρ

∂
− + =

∂
          (35) 

The next thing in this analysis was the elimination of 
c
T  

and
ct
T : 

Differentiate equation (30) and (31) with respect to time 

to give: 

2

f f c
f f f sur sur

T T T
v C UA UA

X t t t
ρ

∂ ∂ ∂
+ =

∂ ∂ ∂ ∂
          (36) 

2

f f ct
f f f sur sur

T T T
v C UA UA

X t t t
ρ

∂ ∂ ∂
+ =

∂ ∂ ∂ ∂
          (37) 

Multiplying equation (36) and (37) by 
c c c

sur

A C

UA

ρ
 and 

,

ct ct ct

sur

A C

UA

ρ
 respectively, lead to the following equations: 

( ) ( )
2

f f f f fc c c c

c c c c c c

sur

v C T TA C T
A C A C

UA X t t t

ρρ
ρ ρ

 ∂ ∂  ∂
+ =   ∂ ∂ ∂ ∂  

         (38) 

( ) ( )
2

f f f f fc c c c

c c c c c c

sur

v C T TA C T
A C A C

UA X t t t

ρρ
ρ ρ

 ∂ ∂  ∂
+ =   ∂ ∂ ∂ ∂  

           (39) 

Combine equation (30), (36), (38) and (31), (37), (39), 

and then eliminate the temperature Tc and Tct, respectively:   

( ) ( )
2

0

f c

f f f sur f sur c c c sur f sur c

f f f f fc c c c

c c c c c c

sur

T T
v C UA T UA A C UA T UA T

X t

v C T TA C T
A C A C

UA X t t t

ρ ρ

ρρ
ρ ρ

∂ ∂
+ − + − + +

∂ ∂

 ∂ ∂  ∂
+ − =   ∂ ∂ ∂ ∂  

           (40) 

( ) ( )
2

0

f ct

f f f sur f sur ct ct ct sur f sur ct

f f f f fct ct ct ct

ct ct ct ct ct ct

sur

T T
v C UA T UA A C UA T UA T

X t

v C T TA C T
A C A C

UA X t t t

ρ ρ

ρρ
ρ ρ

∂ ∂
+ − + − + +

∂ ∂

 ∂ ∂  ∂
+ − =   ∂ ∂ ∂ ∂  

           (41) 

( )
2

0
f f f f f fc c c

f f f c c c

sur

T v C T TA C
v C A C

X UA X t t

ρρ
ρ ρ

 ∂ ∂ ∂ 
∴ + + =   ∂ ∂ ∂ ∂  

           (42) 

( )
2

,

0
f f f f f fct ct ct

f f f ct ct ct

sur

also

T v C T TA C
v C A C

X UA X t t

ρρ
ρ ρ

 ∂ ∂ ∂ 
+ + =   ∂ ∂ ∂ ∂  

             (43) 

Combining equation (42) and (43) produced: 

( )( )

( )( )

2

0

f f f f fc c c ct ct ct

f f f

sur

f

c c c ct ct ct

T v C TA C A C
v C

X UA X t

T
A C A C

t

ρρ ρ
ρ

ρ ρ

 ∂ ∂ 
+ +   ∂ ∂ ∂  

∂
=

∂

          (44) 

( )( )( )

( )( )

2

0

c c c ct ct ct f f ff f

f f f

sur

f

c c c ct ct ct

A C A C v CT T
v C

X UA Xt

T
A C A C

t

ρ ρ ρ

ρ

ρ ρ

   ∂ ∂    + +      ∂ ∂ ∂      

∂
=

∂

          (45) 

( )

( )

2

3 2

2
, 1

1/6

24 1

c ct ct

sur st

c ct ct

st

sur

c ct

d r h
but A A L

d r h

A L
A

d d

π π

ε

π π

ε

  
= −  
  

−
=

          (46) 

Asur can be determined in terms of average particle 

diameter dc, dct for the differential control volume since the 

concrete pellets are spheres of uniform size and cylindrical 

copper tube.  
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( )( )( )
( )

( )( )

2

24 1

0

c c c ct ct ct f f ff f

f f f

st

c ct

f

c c c ct ct ct

A C A C v CT T
v C

X X tA L
U

dd

T
A C A C

t

ρ ρ ρ

ρ
ε

ρ ρ

  
  

 ∂ ∂    + +      ∂ ∂ ∂−         
   

∂
=

∂

          (47) 

( ) ( )( )
( )

( )( )

2

24 1

0

c c c ct ct ct f f f c ctf f

f f f

st

f

c c c ct ct ct

A C A C v C ddT T
v C

X UA L Xt

T
A C A C

t

ρ ρ ρ

ρ
ε

ρ ρ

   ∂ ∂    + +      ∂ − ∂ ∂      

∂
=

∂

         (48) 

Equation (48) is a partial differential equation for the 

fluid temperature (Tf) within the packed bed and can be 

evaluated at any position and time at different stage of the 

packed bed. 

This equation was derived and solved analytically for a 

step input function by Schuman [8]. His solutions were 

presented as a series of sinusoidal curve. 

If equation (48) is a realistic representation of the air 

temperature in a packed bed and the assumptions listed 

previously are valid, then various solutions to this equation 

can be considered. In general, prediction of the outlet air 

temperature from the bed would have to be approached by 

some form of numerical solution. 

The outlet temperature from the solar collector which is 

sinusoidal in nature due to intermittent nature of the solar 

radiation may be treated as a periodic function with a 

periodic time of twenty four hours and mathematically a 

periodic function can often be represented by the sum of a 

series cosine and sine terms (Fourier series). 

It is therefore of some interest to examine the solution of 

equation (48) when the input temperature varies sinusoidally 

for many consecutive periods. In other words, to ignore the 

transient response and concentrate on the periodic response 

to a sinusoidal forcing function. Equation (48) can thus be 

rewritten as: 

2

0
f f f

C D E

T T T
Z Z Z

X X t t

 ∂ ∂ ∂ 
+ + =    ∂ ∂ ∂ ∂   

          (49) 

Where, 

C f f f
Z v Cρ=           (50a) 

( )( )( )
( )24 1

c c c ct ct ct f f f c ct

D

st

A C A C v C dd
Z

UA L

ρ ρ ρ

ε
=

−

        (50b) 

( )( )
E c c c ct ct ct

Z A C A Cρ ρ=          (50c) 

Mathematically, this condition may be presented as the 

following formula since the input temperature varies 

sinusoidally: 

sin
f amp

T T tω=             (51) 

The temperature of the air at any point in the bed at any 

time after transients have died away might be presented 

rearranging equation (51) as: 

( )( , ) sinAX

f amp
T x t T e t BXω

−

= −           (52) 

Where, Tf = the fluid temperature at any distance X and 

any time t 

Tamp = amplitude of the sinusoidal temperature function 

X = positions in the bed 

ω = angular velocity of sinusoidal temperature variation 

imposed on input temperature to the bed 

t = time (hr) 

B = phase lag (rad/l) 

A = exponential decay constant per unit length 

The constants A and B may be found by substituting 

equation (52) into equation (49). 

( ) ( )sin cos
f AX AX

amp amp

T
T Ae t BX T Be t BX

X
ω ω

− −

∂
=− − − −

∂
         (53) 

( ) ( ) ( )
2

cos sin
f AX AX

amp amp

T
T Ae t BX T Be t BX

X t
ω ω ω ω

− −

∂
=− − − − −

∂ ∂
    (54) 

( )cos
f AX

amp

T
T e t BX

t
ω ω

−

∂
= −

∂
          (55) 

( ) ( ) ( )

( ) ( )

sin cos cos

sin cos 0

C C D

D E

Z A t BX Z B t BX Z A C t BX

Z B t BX Z t BX

ω ω ω ω

ω ω ω

− − − − − − +

− + − =

         (56) 

For equation (47) to be an identity for all x and t, since 

sin (ωt-Bx) and cos (ωt-Bx) is not equal to zero, then the 

coefficients of sine and cosine must be zero. 

0
C D

Z A B Zω− + =             (57) 

0
C E D

Z B Z AZω ω− + − =             (58) 

Solving equations (57) and (58) resulted to the two 

constants A and B as follows: 

2

2 2 2

D E

D C

Z Z
A

Z Z

ω

ω

=

+

            (59) 

2 2 2

C E

D C

Z Z
B

Z Z

ω

ω

=

+

            (60) 

The values of constant A and B show that the assumed 

form of solution for equation (49) is valid when the forcing 

function is sinusoidal. Comparison can therefore be made by 

comparing the model equation (52) with the solar collector 

experimental results. 
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3. Application of Finite Fourier series and 

Measurements of Input-Output Air Temperature 

Passing through the Bed 

To obtain a solution to a particular boundary value 

problem, it is necessary to expand the function into a 

trigonometric series. As the outlet temperature from a flat 

plate solar collector changes periodically as a function of 

time, the Fourier expansion corresponding to this function 

could be applied. The Fourier series may be defined as [5]: 

( ) ( )
1

1

cos sin cos
2 2

k n

o n

o k k

k

A A
F t A k t B k t ntω ω ω

= −

=

= + + +∑          (61) 

AK and Bk,, the coefficients of cosine and sine terms are 

defined as Fourier series coefficients which can be obtained 

as follows:  

( )
P 2 1

0

1
cos

n

k p p

P

A F t k t
n

ω

= −

=

= + ∑          k = 0, 1… n          (62) 

 ( ) { }
P 2 1

0

1
sin

n

k p p

P

B F t k t
n

ω

= −

=

= + ∑            k = 1, 2… n-1         (63) 

The function F (t) is often given at 2n-1 points, but it is 

still for 2n intervals. It is assumed that F (o) = F (p) and P is 

the period of the oscillation. 

Applying Fourier expansion procedure, an experiment 

was run using a flat plate solar collector to follow the exact 

profile of the discharge air temperature from an air-type solar 

collector model.  

4. Results and Discussion 

Comparison of flat plate solar collector experimental 

values and values obtained from the Fourier series for inlet 

temperature to the packed bed storage system from 7.00 hr to 

17.00 hr are shown in Fig. 3 and that the predicted values 

increases up to the peak of 77.86
o
C around 15.00 hr while 

the solar collector experimental values increases up to 73.93
 

o
C around the same time. Both predicted and the 

experimental values decreased after 15.00 hr.  

It was discovered that the values for the solar collector 

experiment were approximately 95% close to the predicted 

value from the Fourier series and that the curve produces 

were sinusoidal in nature, this results indicates that the 

radiation received from the sun by the flat plate solar 

collector was intermittent and diffused in nature as predicted 

by the theoretical analysis. 

The comparison of mathematical model and 

experimental values for discharged temperature through the 

copper tube at airflow rate of 0.0094, 0.013 and 0.019 m
3
/s 

for spherical shaped concrete of size 0.065m, 0.08m and 

0.11m (diameter) are shown in Fig. 4, 5 and 6, respectively. 

 

 

 

 

Fig. 3. Comparison of Inlet Air Temperature of Packed bed 

applying Fourier Series Technique with the Solar Collector 

Experimental Data 

The comparisons were made for the period of 7.00 hr to 

17.00 hr.  

Spherical shaped concrete of diameter 0.11m which 

exhibited the highest thermal energy storage efficiency of 

60.5% at 0.013m
3
/s air flow rate also produced the highest 

and usable discharged temperature from the copper tube as 

shown in Fig. 5. 

The measured discharged temperature result from the 

flat plate solar collector for spherical shaped concrete of 

diameter 0.11m during the period 7.00 hr., 8.00 hr., 

 

Fig. 4. Comparison of the Theoretical Discharged Air 

Temperature from the Copper Tube with the Solar Collector 

Experimental Data at 0.0094m
3
/s Airflow rate 

9.00 hr., 10.00 hr., 11.00 hr., 12.00 hr., 13.00 hr., 14.00 

hr., 15.00 hr., 16.00 hr. and 17.00 hr. were 38.47
o
C, 42.85

o
C, 

46.08
 o

C, 49.98
 o

C, 51.24
 o

C, 52.65
 o

C, 54.40
 o

C, 55.79
 o

C, 

54.07
 o

C, 56.12
 o

C, and 56.97
 o

C, respectively, while the 

predicted discharged temperature from the mathematical 

model result for spherical shaped concrete of diameter 0.11m 

during the period 7.00 hr, 8.00 hr., 9.00 hr., 10.00 hr., 11.00 
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hr., 12.00 hr., 13.00 hr., 14.00 hr., 15.00 hr., 16.00 hr. and 

17.00 hr. were 38.49
o
C,43.20

o
C, 47.18

 o
C, 49.78

 o
C, 51.41

 

o
C, 52.86

 o
C, 54.12

 o
C, 55.03

 o
C, 54.60

 o
C, 54.18

 o
C, and 

53.64
 o
C, respectively.  

Taking the average of these values over the period of 

7.00 hr to 17.00 hr which was 50.75
 o

C for the solar collector 

experiment and 50.40
 o

C for the mathematical model, good 

agreement within 1% between the measured values of 

temperature gradient in the packed bed and the predicted 

values obtained by the mathematical model was seen. This 

indicated that the experimental results do validates the 

predicted results. 

 

Fig. 5. Comparison of the Theoretical Discharged Air 

Temperature from the Copper Tube with the Solar Collector 

Experimental Data at 0.013m
3
/s Airflow rate 

The discharged temperature increased for both the 

experimental and the predicted results as diameter of the 

concrete in the packed bed increased for the tested airflow 

rates of 0.0094, 0.013 and 0.019 m
3
/s.  

 

Fig. 6. Comparison of the Theoretical Discharged Air 

Temperature from the Copper Tube with the Solar Collector 

Experimental Data at 0.0194m
3
/s Airflow rate 

5. Conclusion 

The mathematical model and experimental data was 

compared and the mathematical model accurately predicted 

the temperature within the packed bed. Good agreement 

within 1% between the measured values of temperature 

gradient in the packed bed and the predicted values was 

obtained by the mathematical model. The study led to the 

following findings and conclusions: 

1. The mathematical model developed can 

accurately predict the temperature within the 

packed bed. 

2. The closed form solution of the temperature 

variation at the steady periodic temperature 

trend in a packed bed can be approximated by: 

F(X,t) = Te
-AX

 sin(ωt - BX) 

3. Good agreement has been conducted between 

the measured values of temperature gradient in 

a packed bed and the predicted values obtained 

by the mathematical model. 

4. The values of exponential decay coefficient, A 

and lag coefficient, B, equations are valid for 

applying in the assumed form of solutions: 

5. 
2

2 2 2

D E

D C

Z Z
A

Z Z

ω

ω

=

+

 

2 2 2

C E

D C

Z Z
B

Z Z

ω

ω

=

+

 

6. The steady intermittent input temperature 

variation actually led to continuous discharge 

temperature at the copper tube outlet. 

7. A Fourier series technique of temperature 

discharge from a typical air type flat plate solar 

collector can typically be truncated at the third 

harmonic terms. The improvement after three 

harmonics was insignificant since Fourier 

coefficients of sine and cosine terms were very 

small. 

8. Simulation analysis using the mathematical 

model may be used in the design of an air type 

flat plate solar collector to evaluate the 

collector size. 

Nomenclature 

A Cross sectional area of the packed bed (m
2
)  

Asur  The interface area between fluid and the packed 

materials per unit bed length (m
2
/m)  

Tb Temperature of the bed material (K) 

Tf    Temperature of the fluid material (K) 

ρb   Density of the bed material (kg/m
3
) 

ρf    Density of the fluid (kg/m
3
) 

Cb   Specific heat of the bed material (J/kgK) 
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Cf   Specific heat of the fluid (J/kgK) 

t   Time (s)\ 

x   Position along bed in the flow direction (m) 

m  Mass flow rate of fluid (kg/s) 

ε   Void fraction of the bed, dimensionless (void 

volume/total volume of bed) 

hv  is the volumetric heat transfer coefficient (W/m
3
K) 

G  is the fluid mass velocity in kg/sm
2
 of bed frontal 

and 

d  is the rock diameter (m)   

Qc  Heat loss by the spherical concrete materials (J/s)  

ρc  The average density of the spherical concrete 

materials (Kg/m
3
)  

Cc  The specific heat capacity of the spherical concrete 

materials (J/KgK)  

Qct  Heat loss by the copper tube (J/s)  

ρct  The average density of the copper tube (Kg/m
3
)  

Cct  The specific heat capacity of the copper tube 

(J/KgK)  

Q  The rate of heat transfer (J/s)  

U  The convective heat transfer coefficients (J/sm
2
K)  

Tc  The concrete temperature (K)  

Tct  The copper tube temperature (K) 
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