The Photocurrent and Spectral Response of a Proposed \(p^+p\ n\ n^+ \) Silicon Solar Cell

Ashim Kumar Biswas*†, Sayantan Biswas*, Amitabha Sinha*

*Department of Physics, University of Kalyani, Kalyani-741235, West Bengal, India.
(kumarashimbiswas@gmail.com, sayan.solar@gmail.com, asinha333@gmail.com)

†Corresponding Author; A. K. Biswas, Department of Physics, Nabadwip Vidyasagar College, Nabadwip, Nadia - 741302, West Bengal, India, Tel: + 91 9531631423, kumarashimbiswas@gmail.com

Received: 24.05.2017 Accepted: 31.05.2017

Abstract-In this paper an analytical work has been carried out on a \(p^+p\ n\ n^+ \) structure photovoltaic cell in which a low-high junction is present in the front as well as the rear side of the device. The expressions for photocurrent and spectral response of this solar cell structure have been obtained and their variations with different device parameters and wavelength of incident light have been shown graphically. It is observed from theoretical considerations that this structure gives improved performance over previous silicon solar cell structures.

Keywords Si solar cell; high-low junction; front surface field; photocurrent; spectral response.

1. Introduction

After the first silicon solar cell was developed [1], lot of research work have been made to improve the performance of these cells, the most recent one being quantum dot and quantum well solar cells [2-9]. Now a day solar cells have become a strong contender for generation of energy. Their applications in various aspect, and analyticoaal and experimental studies have been reported by researchers [10-13]. The first major improvement in the efficiency of a conventional solar cell was obtained by incorporating a low-high junction at its back which gave the \(n^+p\ p^+ \) structure [14]. This \(p^+ \) junction gave rise to a back surface field and the device was called a back surface field (BSF) solar cell. Theoretical studies on these BSF solar cells were performed and the improvement in the efficiency was attributed to the reduction in the back surface recombination in these cells [15, 16]. It was then suggested that a low-high junction may be incorporated at the front surface of the solar cell to give rise to \(n^+n\ p \) structure [17-19]. This high-low junction emitter structure gave increased open-circuit voltage and short-circuit current. Further theoretical investigations on the front-surface-field (FSF) solar cells were carried out and it was shown that a low-high junction had the significant role to collect light generated current [20]. The role and function of front-surface-field on an \(n^+n\ p \) GaAs solar cell has been reported recently [21] in which a high-low junction factor \(F_{n-1} \) has been introduced. \(F_{n-1} \) determines the effective carrier collection of the low-high junction. Dark current generating in a solar cell has an important contribution in calculating the overall efficiency of such device. Its experimental and analytical studies has been discussed in [22, 23] based on different cell parameters including doping effects. In our present work we have assumed a \(p^+p\ n\ n^+ \) solar cell structure that has low-high junction at both the front and the rear surfaces giving rise to front surface field (FSF) as well as back surface field (BSF). A complete analytical study for this proposed new structure has been carried out.

2. Analysis

Silicon solar cell considered in this study is highlighted in Fig. 1. The front and rear parts of this \(p^+p\ n\ n^+ \) structure are formed with a \(p^+p \) and an \(n^+n \) low-high junctions respectively. The thicknesses of the quasi-neutral \(p^+\), \(p\), \(n \) and \(n^+ \) layers considered for this cell are \(W_{p^+}, W_p, W_n \) and \(W_{n^+} \) respectively. \(W_d, W_e \) and \(W_b \) are...
the widths of the depletion regions at the respective junctions.

As shown in the Fig. 1,

\[x_1 = W_{p^+} + W_n, \quad x_2 = W_{p^+} + W_{p^+}, \quad x_3 = W_{p^+} + W_{p^+} + W_n, \]
\[x_4 = W_{p^+} + W_{p^+} + W_{p^+} + W_{p^+}, \]
\[x_5 = W_{p^+} + W_{p^+} + W_{p^+} + W_{p^+} + W_n, \]
\[x_6 = W_{p^+} + W_{p^+} + W_{p^+} + W_{p^+} + W_n + W_b. \]

The photocurrent contribution from each layer of the solar cell and also from the depletion regions may be found out by solving the current density and the continuity equations with special boundary conditions [21, 24].

The required boundary conditions for p\(^+\) region are

\[D_{n} \frac{d(\Delta n)_{p^+}}{dx} = S_n (\Delta n)_{p^+} \quad \text{at} \ x = 0 \]
(1)

\[(\Delta n)_{p^+} = \Delta n_0 \quad \text{at} \ x = x_1 \]
(2)

where \(\Delta n_0\) denotes the excess electron density at high-low junction.

Solution of the electron continuity equation along with the current density equation in using the above two boundary conditions gives the following expression of excess electron density at p\(^+\) region.

\[
\frac{S_{p^+} L_n^+}{D_n^+} \sinh \left(\frac{x_1 - x}{L_n^+} \right) + \frac{S_{p^+} L_n^+}{D_n^+} \sinh \left(\frac{x}{L_n^+} \right) + \cosh \left(\frac{x}{L_n^+} \right) \left(\exp (-\alpha x_1) + \frac{\Delta n_0}{\Gamma L_n^+} qD_n^+ \right) - \exp (-\alpha x)
\]
\[
\times \left[\frac{S_{p^+} L_n^+}{D_n^+} \sinh \left(\frac{x_1}{L_n^+} \right) + \cosh \left(\frac{x_1}{L_n^+} \right) \right]
\]
with
\[
\Gamma = \frac{qF(1 - R)\alpha L_n^+}{\alpha^2 L_n^+ - 1}
\]

where \(\alpha\) is the absorption coefficient of the material.

The expression of the photocurrent density generated in p\(^+\) layer and collected at \(x_1(= W_{p^+})\) is seen as follows

\[
J_{n, x_1}^+ (\lambda) = \frac{S_{p^+} L_n^+}{D_n^+} \sinh \left(\frac{W_{p^+}}{L_n^+} \right) + \cosh \left(\frac{W_{p^+}}{L_n^+} \right) \left(\exp (-\alpha W_{p^+}) + \frac{\Delta n_0}{\Gamma L_n^+} qD_n^+ \right) - \alpha L_n^+ \exp (-\alpha W_{p^+})
\]
\[
- \Gamma \left[\frac{S_{p^+} L_n^+}{D_n^+} \sinh \left(\frac{W_{p^+}}{L_n^+} \right) + \cosh \left(\frac{W_{p^+}}{L_n^+} \right) \right]
\]

where \(\lambda\) is the wavelength of incident light.

If \(\Delta n_0 = 0\), then \(J_{n, x_1}^+ (\lambda) = J_{n, x_1}^+ (\lambda)\), the collected photocurrent at \(x_1\) in the case of a conventional p-n junction cell. Imposing this condition in equation (4) the expression for \(J_{n, x_1}^+ (\lambda)\) is obtained as

\[
J_{n, x_1}^0 (\lambda) = -\Gamma \left[\frac{S_{p^+} L_n^+}{D_n^+} \sinh \left(\frac{W_{p^+}}{L_n^+} \right) + \cosh \left(\frac{W_{p^+}}{L_n^+} \right) \exp (-\alpha W_{p^+}) \right] - \alpha L_n^+ \exp (-\alpha W_{p^+})
\]
\[
- \frac{S_{p^+} L_n^+}{D_n^+} \sinh \left(\frac{W_{p^+}}{L_n^+} \right) + \cosh \left(\frac{W_{p^+}}{L_n^+} \right)
\]

Now, Substitution of equation (5) in equation (4) gives the following form of the photocurrent density.
Due to presence of the high-low junction, surface recombination velocities in p + and p regions may be modified as effective surface recombination velocities $S_{e,pp}^{*}$ and $S_{e,pp}^{*}p$ as suggested by Dai et al [20]. The high-low factor of low-high junction has been defined by the relation [21].

$$F_{n-l}^{-1} = \frac{1}{1 + \left(\frac{S_{e,pp}^{*}}{S_{e,pp}^{*}p}\right)\left(\frac{N_{a,eff}^{*}}{N_{a,eff}}\right)}$$

(7)

The expression of the photocurrent, which is collected by the p-n junction at x_3, may be written as [21] with a correction factor

$$J_{n,x_3}^{*}(\lambda) = J_{n,x_3}^{*}(\lambda)F_{n-l}^{-1}sech\left(\frac{W_p}{L_n}\right)$$

(8)

The photocurrent density collected at x_3 from the depletion layer of the low-high junction is given by the following equation [21].

$$J_{n}(\lambda) = \left[\frac{qF(1 - R)\alpha L_n}{\alpha L_n - 1}\right] \times \exp\left[-\alpha(W_p + W_a)\right] \times \left[\frac{\left(\frac{S_{e,pp}^{*}L_n}{D_n} + \alpha L_n\right) - \left(\frac{S_{e,pp}^{*}L_n}{D_n} - \cosh\left(\frac{W_p}{L_n}\right) + \sinh\left(\frac{W_p}{L_n}\right)\right)\exp(-\alpha W_p)}{\frac{S_{e,pp}^{*}L_n}{D_n} \sinh\left(\frac{W_p}{L_n}\right) + \cosh\left(\frac{W_p}{L_n}\right)}\right] - \alpha L_n \exp(-\alpha W'_p)$$

(10)

$$J_{p}(\lambda) = \left[\frac{qF(1 - R)\alpha L_p}{\alpha L_p - 1}\right] \times \exp\left[-\alpha(W_p + W_a + W_p + W_a)\right] \times \left[\frac{\left(\frac{S_{e,pp}^{*}L_p}{D_p}\right)\cosh\left(\frac{W_p}{L_p}\right) - \exp(-\alpha W_a)}{\frac{S_{e,pp}^{*}L_p}{D_p} \sinh\left(\frac{W_p}{L_p}\right) + \cosh\left(\frac{W_p}{L_p}\right)}\right]$$

and

$$J_{w_3}(\lambda) = qF(1 - R)\exp\left[-\alpha(W_p + W_a + W_p)\right] \left(1 - e^{-\alpha W'_a}\right)sech\left(\frac{W_p}{L_n}\right)$$

(12)

where $S_{e,pp}^{*}$ is the effective recombination velocity of hole in n region due to the effect of n+ region, and width of the depletion region formed between p and n layers has been calculated as [28].

Since n- n+ low-high junction is present at the back side of the device, some currents are also generated in n+ and n- n+ space charge regions. Using similar boundary conditions as the calculation of photocurrent from front p+ and p- p+ high-low junction space charge regions, we can obtain the expressions for the photocurrents $J_{p,x_4}^{*}(\lambda)$ and $J_{w_5}(\lambda)$ collected from n+ and n- n+ high-low junction depletion regions.

Thus, the spectral response (SR) of the proposed p+n+n silicon device is given by the sum of the contributions from each layer of the cell including the contributions from all the depletion regions.
Hence the photocurrent density supplied by the proposed cell is measured as [24].

\[
I_{ph} = \int_{\lambda_1}^{\lambda_2} qF(\lambda)(1 - R(\lambda))SR(\lambda) d\lambda \quad (14)
\]

3. Results and Discussion

The high-low factor has been calculated from equation (7), whereas the spectral response and the photocurrent density have been calculated using equation (13) and (14) respectively. Wavelength of the incident photons used for the calculation of photocurrent density has been ranged from 0.24 µm to 1.08 µm, and photon density corresponding to different wavelengths has been measured following the relation as proposed by Liou and Wang [29] for this simulation. \(\alpha \) as a function of \(\lambda \) has been measured by the relation discussed in [30]. Effect of heavy doping in narrowing band gap has been considered and doping dependent mobilities, diffusion coefficients and minority carrier lifetime have been taken into account.

Graphical representation of the high-low factor against acceptor concentration \(N_a^+ \) for various values of front surface recombination velocity (\(S_m \)) is shown in Fig. 2. The high-low factor increases as the value of \(S_m \) decreases and also as the acceptor concentration in the \(p^+ \) layer is increased. On the other hand high-low factor decreases for increasing values of \(S_m \). At higher values of the recombination velocity more and more carriers are lost, giving low values of high-low factor.

![Fig. 2. High-low factor with acceptor concentration.](image)

The variation of SR as a function of wavelength of incident photons is shown in Fig. 3 for various values of acceptor density \(N_a^- \). The value of \(N_a^- \) is chosen as \(10^{16} \text{ cm}^{-3} \) for this graph. For a particular value of \(N_a^- \), if wavelength of the incident photons gradually increases, spectral response increases slowly and attains maximum value, and then if the wavelength is further increased, spectral response abruptly falls. On the other hand as the value of \(N_a^- \) increases, spectral response increases due to increased values of high-low factor at the front.

![Fig. 3. Spectral response (SR) against wavelength of incident photons.](image)

Photocurrent density versus front layer width \(W_{p^+} \) is plotted in Fig. 4 for various values of acceptor concentration \(N_a^- \). It is observed that for a particular value of \(N_a^- \), photocurrent density almost remains constant as \(W_{p^+} \) increases, whereas photocurrent increases significantly when \(N_a^- \) is increased.

![Fig. 4. Photocurrent density against \(W_{p^+} \).](image)

The variation of photocurrent density with \(W_p \) is shown in Fig. 5 for various values of acceptor concentration \(N_a^- \). It is noticed that for a particular value of \(N_a^- \), photocurrent density decreases as the value of \(W_p \) is increased. The photocurrent density decreases for increasing values of \(N_a^- \). This may be explained following the argument that the effective surface recombination
velocity in p region increases when \(N_a \) increases and hence photocurrent decreases due to carrier lost at high recombination.

![Graph showing photocurrent density vs. \(W_p \) for different values of \(N_a \)](image)

Fig. 5. Photocurrent density with \(W_p \) for different values of \(N_a \).

The calculated photocurrent density for various types of silicon solar cells has been graphically shown in Fig. 6 for increasing values of the concerned cell thickness. Solid curve represents the photocurrent density \(J_{ph} \) for a normal p-n junction device whereas dotted curve represents that of a FSF solar cell, and dashed curve corresponds to \(J_{ph} \) for a BSF cell and dashed with dotted curve gives the photocurrent density of the proposed p\(^+\) p n n\(^+\) device in which both front-surface field and back-surface field are present. This is observed from the figure 6 that the photocurrent density of the proposed solar cell is not only larger than the normal p-n junction and FSF solar cells but also this is slightly higher than p\(^+\) n n\(^+\) BSF cell. This is because this proposed structure includes the effects of both the front and the back surface fields.

![Graph showing photocurrent density vs. cell thickness for various types of solar cells](image)

Fig. 6. Photocurrent density versus cell thickness for various types of solar cells.

The calculations carried out on the basis of the analysis derived in this paper give some optimum values of the cell parameters for giving improved performance. These parameters are given in Table 1.

<table>
<thead>
<tr>
<th>Normal</th>
<th>BSF</th>
<th>FSF</th>
<th>BSF & FSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.52</td>
<td>35.67</td>
<td>34.78</td>
<td>35.93</td>
</tr>
</tbody>
</table>

Table 1. The optimized parameters for the proposed p\(^+\) p n n\(^+\) device.

\[
W_{p+} = 0.05 \, \mu m, \quad W_p = 0.5 \, \mu m, \\
N_a^+ = 5 \times 10^{18} \, cm^{-3}, \quad N_a = 2 \times 10^{17} \, cm^{-3}, \\
W_{n+} = 0.1 \, \mu m, \quad W = 180 \, \mu m, \\
N_d = 1 \times 10^{15} \, cm^{-3}, \quad N_d^+ = 5 \times 10^{18} \, cm^{-3}
\]

Suggestions for future work:

(i) This work may be suitable for designing silicon solar cells having improved performance and further experimental investigation may be carried in this direction.

(ii) Some extension of this work may be carried out by considering the materials such as GaAs and InAs.

4. Conclusion

In this paper the photocurrent and spectral response of a proposed p\(^+\) p n n\(^+\) device have been investigated analytically and the importance of low-high junction in improving photocurrent has been discussed. Basically the contribution of the p\(^+\)p junction is the remarkable reduction of the surface recombination velocity in p-region, which enhances the photocurrent contribution from the p-layer. Theoretically, unit value of \(F_{n-1} \) implies the best carrier collection of the low-high junction. However, the experimental values will be always less than this. The most significant contribution of this work is to simultaneously consider the effects of both front-surface field and back-surface field in the operation of a solar cell. It is concluded from the present work that spectral response and photocurrent are significantly higher for p\(^+\) p n n\(^+\) structure, as compared to the case when a normal p n n\(^+\) structure is considered.

Acknowledgement

We express our thanks to IACS Kolkata, whose Library we consulted frequently.
Applications

Quantum photovoltaic effect: Two

Solar Cell Using InN quantum

References

new silicon p-n junction photocell for converting

solar radiation into electrical power”, J. Appl.

[2] V. Aroutiounian, S. Petrosyan, A. Khachatryan and

Sinha, “Spectral response of the intrinsic region of a

GaAs-InAs quantum dot solar cell considering the

absorption spectra of ideal cubic dots”, Physica

approach to high-efficiency multi-band-gap solar

Roberts and C. Button, “Steady-state carrier escape

from single quantum wells”, IEEE J. Quantum

analytical study of the various current components of an

AlGaAs / GaAs multiple quantum well solar cell”, Physica

process in solar cell”, International Conference on

[8] M. A. Humayun et al., “Improvement of

minority carrier distribution and photocurrent of a

p-n quantum dot solar cell based on the

[10] Sun Y., Yan X., Yuan C., Luo H. and Jiang Q.,

“The I-V characteristics of solar cell under the

effect of ship low frequency vibration on the output

characteristics of PV cells under different solar

irradiation”, International Conference on

[12] Ahamed Md T., Goncalves T., and Tlemcani M,

“Single diode model parameters analysis of

photovoltaic cell”, International Conference on

simulation of the electric characteristic of space

satellite solar cells”, International Conference on

Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, pp. 983-987, 5-8 November 2017.

heavy doping on the properties of high-low

analytical solution for the quantum efficiency of

A. K. Biswas et al., Vol.8, No.1, March, 2018

Nomenclature:

- p^+: heavily donor doped region
- p: lightly donor doped region
- n^+: heavily acceptor doped region
- n: lightly acceptor doped region
- W_{p^+}: width of p^+ type region
- W_p: width of p type region
- W_{n^+}: width of n^+ type region
- W_n: width of n type region
- W_d: depletion region width produced at high-low junction
- W_b: depletion region width produced at p-n junction
- W: thickness of the entire solar cell
- $(\Delta n)_{p^+}$: excess minority carrier (electron) concentration in p^+ type region
- Δn_0: excess minority carrier (electron) concentration at high-low junction
- S_m: front surface recombination velocity for electron
- D_m^+: diffusion coefficient for electrons in p^+ type region
- L_m^+: diffusion length of electrons in p^+ type region
- q: electronic charge
- λ: wavelength of incident photons
- $a(\lambda)$: absorption coefficient of the material of solar cell
- $F(\lambda)$: incident photon density
- $R(\lambda)$: reflection coefficient of the material of solar cell
- Γ: a factor shown in the text
- $J_{n,x_1}^-(\lambda)$: electron photocurrent density contributed from p^+ type region
- $J_{n,x_1}^+(\lambda)$: electron photocurrent density collected at high-low junction
- S_{e,pp^+}: effective surface recombination velocity of electrons in p layer due to the influence of electrons in p^+ region
- S_{e,p^+p}: effective surface recombination velocity of electrons in p^+ layer due to the influence of electrons in p region
- S_{e,n,n^+}: effective surface recombination velocity of holes in n layer due to the influence of holes in n^+ region
- S_{e,n,n^+}: effective surface recombination velocity of holes in n^+ layer due to the influence of holes in n region
- N_a^+: acceptor concentration in p^+ region
- N_a: acceptor concentration in p region.
effective acceptor concentration in p^+ region

effective acceptor concentration in p region

high-low factor

photocurrent density collected at x_3 on account of ($p^+ p$) high-low junction

diffusion coefficient of electrons in p type region

diffusion length of electrons in p type region

diffusion coefficient of holes in n type region

diffusion length of holes in n type region

electron photocurrent density contributed from p type layer

hole photocurrent density contributed from n type layer

photocurrent density contributed from $p-n$ junction deletion layer

hole photocurrent density contributed from n^+ type layer and collected at x_4

hole photocurrent density contributed from n type layer and collected at x_4

spectral response of the solar cell

total photocurrent density obtained from the solar cell