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Abstract- The DC Microgrid concept has been flourishing in the recent times due to its intrinsic advantages like Renewable 
Energy Source (RES) compatibility, easier integration with storage utilities through Power Electronic Converters (PECs) and 
distributed loads. In-depth researches are going on in this field, as the concept of DC Grid can be considered as a master 
foundation in the realization of Smart Grid (SG) technologies. To achieve this, a number of constraints such as voltage 
regulation, islanding detection, allowable transient levels, etc. are to be met in accordance with globally accepted standards. 
The system should have a proper control scheme to keep the things reliable, fault-free and interoperable. In order to meet the 
constraints as per globally recognized standards, quite a few classes of control algorithms are adopted namely, Centralized, 
Decentralized and Distributed control. A standardized review of these control strategies is discussed as part of this work. A 
comparative study among these techniques is made so as to help a designer to choose the apt technique for controlling the 
microgrid. 

Keywords DC Microgrid, Centralized control, Decentralized control, Distributed Control, Droop methods. 

 

1. Introduction 

The proliferation of Renewable Energy Sources (RES) 
makes the concept of Micro Grid (MG) reliable, resilient and 
cost-effective along with several eco-friendly benefits 
compared to the conventional utility systems. Among the 
conventional power generation and load demand, an 
immense gap arises at an annual load growth of 2.5% [1]. To 
integrate distributed generation, the concept of MG was 
revived by Lasseter R. H in the year 2002 as a low voltage 
distribution network [2-4]. These electric networks have the 
capability to work in both grid-tied and islanded conditions 
[5] depending on the consumer and utility conditions. The 
recent advancements in the field of Power Electronics (PE) 
[6] have made DC electric grid systems to meet the standards 
in a cost-effective and seamless manner. The DC MG 
paradigm paved way for extensive use of DC loads [7] for 
industrial as well as residential applications like Telecom 
stations [8, 9], Data centers [10, 11], Electric Vehicles (EV) 
[12], Electric ships [13], Renewable energy park [14-17], DC 
powered houses [18-21], Hybrid energy storage systems [22-

27], Railways [28-31] and zero-net electricity energy 
buildings [32-35]. The various Energy storage devices were 
able to naturally interface with the DC microgrid system 
more effectively as compared to AC system [36, 37]. The 
evolution of DC microgrid paved the way for development 
and research of electric ship [38] and applications for smart 
and better charging of EVs [39]. Most of the present-day 
electronic equipment such as LED lamps, laptop/phone 
chargers, televisions, etc. need DC voltage levels for its 
operation. Currently, controlled AC-DC converters are used 
in the front-end sections of this electronic equipment to get 
DC voltage levels for its working [40]. 

The varying generation characteristics and intermittency 
of power delivered through RESs connected to a microgrid 
network require voltage leveling systems that are kept on the 
low voltage feeders through storage elements like Battery 
Energy Storage System (BESS), flywheel and Super 
Capacitors (SCs) along with the power electronic interfaces 
(PEIs) [41]. A Distributed Energy Resources (DERs) is 
defined as the combination of these entities. Fig.1 shows the 
schematic of a DC MG with RESs, battery unit, and super-
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capacitors. There are three different levels of control for DC 
MG as per the International Society of Automation-95 (ISA-
95) standard [42], namely primary, secondary and tertiary 
levels of control. The primary level control aids in proper 
load power-sharing among two or more parallelly connected 
converter interfaces. The parameters for primary control are 
made by the secondary control, while the dispatching of 
storage and source is scheduled by the tertiary control, which 
is decided by the transmission and distribution system 
operators. The controller proposed in paper [43] is a 
modified PI controller to reduce transient and steady-state 
voltage oscillations and voltage ripples.  

 
Fig. 1. A DC MG Structure 

In an AC microgrid system, control operations require 
frequency control (P/f) and voltage control, where two 
control units are required which receives information from a 
hierarchical entity or supervisory control entity based on 
which control algorithm gets implemented to maintain 
system stability, reliability and operability. Whereas in a DC 
microgrid, control aspect boils down to a single entity rather 
than two different entities (Frequency and Voltage) in AC 
microgrid control. This indirectly makes distinction in 
implementation of control algorithms in DC microgrid as 
compared with AC microgrid based control systems.  The 
aforementioned literature describes the principles behind 
these control techniques. A plethora of the existing MG 
control techniques by acknowledging some of the prominent 
applications, modeled by adopting both modern and classical 
control strategies are brought together in this paper; as a 
detailed and systematic extensive review is lacking. The 
ongoing development in DC MG is hence estimated with the 
help of this comprehensive review. Section 2 details a 
comprehensive survey of various control strategies adopted 
in DC MG. In section 3, a few miscellaneous functions of 
DC microgrid are presented. Section 4 throws light into 
various technical challenges in the DC microgrid. Finally, 
section 5 and 6 presents the discussions and future research 
trends with the conclusion. 

2. Control Techniques for DC Microgrid 

The DC Microgrid Control topologies as shown in Fig.2 
plays a key role in the better, stable and efficient operation of 
DC MG. The power electronic converters act as an interface 
to properly control the grid with better voltage regulation and 
current sharing. They not only act as interfaces but also 
facilitate the proper interconnection among various units 
present in the DC MG. A better control strategy needs to be 
developed so as to reduce the non-linearity effect created by 
the power converters due to its constant power behavior. The 
rapid rise in non-linear loads and distribution generation 
made the control structure more complex which is inevitable 
too.  

 
Fig. 2. DC MG Control strategies 

The various control targets are [44]:  

Ø Smooth switching from islanded to the grid-
connected method of operation; 

Ø Regulation of voltage and current sharing; 

Ø Stable operation with non-linear as well as constant 
power load; 

Ø Optimizing the Micro Source (MS) production to 
participate in the energy market; 

Ø Controlling the power flow among MG and the rest 
of the network using an effective and proper Energy 
Management Scheme (EMS); 

Ø Efficient load power-sharing and proper 
communication medium between DERs; 

Ø Proper control mechanisms to prevent grid failure 
and potentiality to black start; 

Ø Generation cost optimization and economic 
dispatching of loads; 

Ø Maximizing the potentiality of DERs and reducing 
the transmission losses; 

Ø Capability to provide uninterrupted power supply to 
critical loads like hospitals, industries, and other crucial 
utilities. 

2.1. Centralized Control 

The networked units [45] situated at a particular location 
achieve intelligence that is controlled by a microcontroller, 
switch or even a server. Communication is the core element 
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of such a system, that helps in the easier operation of the 
centrally controlled system. The data from different units of a 
DC MG is initially collected by the system operator. Then, 
the collected data is processed and necessary control 
commands are transferred to them via a proper 
communication medium. Some of the advantages of the 
centralized controller are: strong controllability of the entire 
system, desires a single controller, the ability to define broad 
strategies for controlling the system and observability.  

A Master-slave control as depicted in Fig.3 mechanism 
is a prominent technique that is widely utilized for attaining 
parallel operation of multiple sources. In this mechanism, 
one converter serves as a Voltage Source Converter (VSC), 
which acts as a master and commands slave units for 
regulating the DC bus voltage. The remaining converters act 
as slaves, that feeds necessary current support as per the 
instruction from the master controller. The master converter 
operates in such a way that the grid voltage is maintained 
within the tolerance band, and the remaining converters that 
act as slaves support the master in achieving the same.  

 
Fig. 3. A schematic for Master-Slave controller 

The control mechanism totally depends on a high-speed 
communication platform, and any failure in proper 
communication affects the overall system performance and 
may even result in complete black-out of the entire system. 
The major drawbacks of this control strategy include reduced 
battery life, low scalability, need for supervisory control, 
expensive and poor fault tolerance capability. 

A master-slave control algorithm for input-series and 
output-parallel full-bridge converter is discussed in [46], 
which is controlled by a phase-shift controller. The limited 
range of output voltage regulation is mitigated using the 
master controller. Some of the advantages include flexibility 
and easy implementation, that makes it suitable for high 
power and high voltage utilities. Federico et. al. [47] 
proposed a master-slave control for the electric bus 
application and assumed to have achieved an efficiency of 
more than 3% as compared with existing conventional 
strategies.  

2.2. Decentralized Control 

In a decentralized controller [48], the distributed units 
are controlled by the autonomous local controllers via 
independent local variables and there is no communication 
medium in the control. This control strategy is considered to 
be the most reliable, despite its limitations due to the absence 
of a communication link. A switched current mode based 
decentralized controller is proposed in [49] where the 
voltage-controlled source is replaced by a current-controlled 
source. The results claim that the proposed control advance 
in better transient response, plug-in and plug-out capacity, 
better voltage regulation and adequate current distribution. 

A Multi-Agent System (MAS) [50] based control was 
proposed by researchers that combines the advantages of 
both centralized as well as decentralized control systems. 
Some of its merits include better fault tolerance capability, 
more flexible and scalable, easy to implement, sot-effective 
and good power management ability. Some of the widely 
accepted decentralized control schemes are described below. 

2.2.1. Conventional Droop Control 

The droop characteristics are based on the performance 
pattern, when a current is injected to the grid it produces a dc 
grid voltage that is proportional to each other. It is one of the 
popular decentralized control strategies [50] adopted to 
minimize or eliminate the circulatory current between 
converters without communication medium. They also 
provide good voltage regulation in microgrids. The equation 
governing the same is given as, 

Vref = Vo+(Iref ×Rdroop)                                                    (1)                                 

where Vref is the reference DC grid voltage, Vo is the output 
voltage of the PEC, Io is output current and Rdroop is the 
virtual resistance. Fig.4 depicts the conventional droop 
control scheme. The improper selection of droop resistance 
results in poor load sharing and voltage regulation, poor 
performance with RES units.  

 

Fig. 4. A conventional voltage-droop control scheme 
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          Figure 5 depicts the voltage control scheme of a DC-
DC converter. [51] proposed a decentralized droop method 
for a low voltage DC microgrid. All the grid parameters like 
SoC of BESS, the effect of feeder resistance, etc. were taken 
into account. To perform better power sharing among the 
DERs, three modes of operation and fault condition were 
taken into consideration. 

 

Fig. 5. Voltage control scheme of the DC-DC converter 

2.2.2. Virtual Resistance based Droop Control 

The demerits of the droop control mechanism are solved 
by proposing a virtual droop resistance [52]. The proposed 
method introduces a virtual resistance called droop resistance 
(Rdroop) which is a function of the terminal voltage.  

Iref = (Vref - Vo) / Rdroop                                                      (2)                                                                                                 

Rdroop= func(Vo)                                                            (3)                                                            

This is done to achieve a non-linearity in the droop 
characteristics and hence voltage regulation is improved. 

2.2.3. Adaptive Droop Control 

An adaptive droop strategy for DC MG is discussed in 
[53] where solar PV, fuel cells and BESSs are taken into 
consideration. For proper power-sharing, the charging and 
discharging of the BESS units are managed using a 
bidirectional adaptive droop strategy. In [54], a closed-loop 
reference model (CRM) adaptive droop strategy was used to 
realize the DC MGs droop function. To achieve simultaneous 
voltage stability and current sharing, a time-varying model is 
acquired, a projection algorithm and a normalization 
technique with the above-mentioned adaptive droop strategy 
is used. 

Paper [55] proposed an adaptive droop strategy for low 
voltage DC MG that is based on super-imposed frequency 
along with a virtual resistor. An AC current is injected on 
both primary as well as the secondary sides using local 

measurement data to accommodate the droop gains in order 
to achieve better voltage regulation and load sharing. The 
voltage regulation and load sharing are achieved by injecting 
an ac power at both primary and secondary levels using 
locally available measurements to adapt the droop gains. 
This made the system free from any communication links 
and more economic. Another parameter that concerns the 
effectivity of the proposed controller is the AC power 
injection to a DC MG, which creates stability issues and 
lowers the power quality. 

2.3 Distributed Control 

A network of several controllers equipped in each PE 
sources forms a distributed control, which helps in proper 
load sharing to maintain steady grid voltage. This control 
mechanism has the advantages of both centralized as well as 
the decentralized controller. The controller of each PE 
devices communicates via a communication medium same as 
that of a decentralized controller, but with limited bandwidth. 
This helps in performing the vital operation like SoC 
balancing, restoring the voltage, load power-sharing, etc. 
Any significant increase in Distributed Generation (DG) 
units makes it complex to implement centralized control 
scheme. During such a crisis, the distributed controller 
proves to be a better competitor. An added advantage of such 
a controller is that even if the communication link breaks, it 
makes the system functions as it is immune to a single-point 
failure. The major drawbacks include deviation in bus 
voltage, complex analytic behavior, and error in tracking 
power. 

In Ref. [56], an advanced droop architecture for DC MG 
is proposed. The enhancement of voltage regulation and 
optimal power is done with the aid of a non-linear optimal 
controller. All the information regarding MG operation is 
necessary for the controller to convert them into a linear 
near-optimal control issue. The proposed controller proves to 
be better than the conventional droop methodologies even for 
intermittent communication medium and is found to be more 
stable and robust in nature. The system proves to be more 
stable by working as a conventional droop control 
methodology under some special cases. A novel approach to 
a distributed droop control and Energy Storage (ES) in a DC 
MG forming a networked grid is proposed in [57]. The droop 
characteristics are actuated with the aid of local BESSs for 
each MSs. A feed-forward approach is utilized to match the 
MSs voltages to the grid voltage by altering the duty cycle of 
PECs periodically. The proposed controller claims faster 
update rates and reduction in the number of ES units. 

A distributed control strategy is proposed in [58] that 
helps in enhancing the voltage regulation and local power-
sharing in a DC MG. A dispersed cyber-network is utilized 
for the exchange of data, where the average voltage across 
the grid is estimated using a voltage observer. It uses a PI 
control and adaptive droop, where the virtual impedance of 
DERs are regulated by the current regulators. Table 1 shows 
a detailed description of the various control schemes 
discussed in this section. 
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Table 1: Summary and comparison of DC microgrid algorithms 

 

3. Extensive Operation of DC Microgrid 

3.1 Battery Management System (BMS) 

There are numerous scenarios where the above-
mentioned control strategies are applied. In the modern 
power system environment, the integration of ES units 
[59] has been increasing rapidly due to the advent of 

innovations and advancements in the deployment of DERs. 
Using the SoC level, a BMS controlling circuit is 
developed in [60] for each cell’s charge-equalization. A 
dual step-down half-bridge bidirectional ac-dc converter is 
utilized, that enables high power flow and is able to 
precept the functioning of allied circuitries like the inverter 
and BMS. The control of a hybrid energy storage system 
(HESS) for a battery-supercapacitor (SC) units is 

Control 
Technique Method 

Load 
current 
sharing 

Implementation 
Complexity 

Voltage 
Regulation 

Other 
Features Applications 

Centralized 
Control 

Phase-shift Control 
[46] Fair Simple Good • More flexible 

• Fault-tolerant 
High voltage and 
power DC Grid 

Proportional 
Integral Control 
[47] 

Fair Moderate Good 

• Robust 
• Improved 

efficiency 
• Eliminates extra 

wiring 

Low voltage DC 
Electric bus 
system 

Multi-stage 
Control [65] Good Complex Better 

• Faster transient 
response 

• Minimize load-
shedding 

• Reduced cost of 
operation 

Islanded DC 
microgrid with 
Plug-in EVs 

Decentralized 
Control 

Conventional PI 
Control [50] Poor Easy Good 

• Fault-tolerant 
• More flexible 
• Scalable 

DC system 

Adaptive-droop 
strategy [53] Good Easy/ moderate Better 

• Robust 
• Integrates RESs 

like SOFC, PVs, 
and BESS 

DC system only 

Closed-loop 
reference model 
adaptive control 
(CRM) [54] 

Better Moderate/ 
Complex Better 

• Robust under noise 
disturbances and 
uncertainties. 

• Better power-
sharing. 

• More effective 
than linear control 
strategy. 

High Voltage DC 
MG 

Adaptive droop 
controller based on 
super-imposed 
frequency [55] 

Better Moderate Better • More economic 
• More reliable. 

Low voltage DC 
MG 

Distributed 
Control 

Non-linear optimal 
Control [56] Good Moderate Better • More stable. 

• Robust DC MG 

PI controller with 
HSS [57] Good Moderate/ 

Complex Better 

• Flexible and 
adaptable. 

• Reduced use of 
energy storage 
elements. 

DC MG 

PI controller with 
Adaptive-droop 
control [58] 

Good  
Complex Better 

• Proportional load 
sharing. 

• Plug-and-play 
compatibility 

Low voltage DC 
MG 
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discussed in paper [61]. The SC converter is regulated by a 
virtual capacitor droop while a high-pass filter droop is 
implemented for controlling the battery converter. The 
proposed system mitigates various issues like SoC 
balancing, dynamic power-sharing, steady-state grid 
voltage restoration, etc. The controller also helps in 
efficient power buffering due to the rapid dynamics of SC 
included and also ensures continuous and long operation of 
HESS. 

3.2 Load Management 

The overall stability and reliability of the MG are 
greatly influenced by the loads. During proper load 
scheduling and management, the grid operating parameters 
widely influence the consumer's energy usage [62]. During 
system failure or permanent blackout, proper control 
strategies need to be taken by the grid operator and thereby 
the existing loads can be diminished to reduce the risk of 
power failure. In [63], the issue with frequency and power 
fluctuations is eliminated using proper management of 
active load. The existing scenario can be widely exploited 
to increase the grids reliability, stability, optimizing 
generation and allow RES integration on a large scale [64]. 

3.3 Electric Vehicle (EV) Integration 

The EVs are gaining popularity in the current market 
due to the depletion of fossil fuels and low efficiency of IC 
engines. They can enact the role of a generating unit, 
controllable load, maintaining supply-continuity and 
backing the grid. A multi-stage centralized control 
algorithm is developed in paper [65] to allow extensive use 
of EVs in a microgrid. The system is designed in such a 
way that, several objectives are fulfilled using a 3-stage 
droop-based power control scheme. The system starts by 
minimizing load-shedding whenever the power generation 
is low, and then it minimizes the grids operating cost and 
maximizes utilization of EVs in an extensive manner. In 
order to validate the robustness and effectiveness of the 
system, two operating scenarios i.e., a grid without and 
with sufficient generation were considered for the study. 

3.4 Utilization of RESs and ESS 

The current energy scenario demands more utilization 
of RES like solar PV, wind energy systems (WESs), 
hydropower, etc. The synchronized operation of numerous 
components like BESSs, RESs and loads using a 
centralized controller is discussed in paper [66]. The 
controller performs three main tasks including equalizing 
SoC, to prevent battery overcharging by active power 
interruption and load-shedding to avoid battery discharge. 
The proposed system leads to increased life-span of energy 
storage units and optimal scheduling of loads. 

3.5 Control and Protection of Microgrid 

        Another major safety-critical feature which is 
inevitable for microgrid operation is protection. This 
feature requires much more attention in DC microgrid as 

compared to AC systems due to the absence of zero-
crossing current. Research gap is still open in this area of 
DC microgrid protection scheme for better operation and 
safety of the operators, end-users and other participants 
involved in the utilization of the microgrid and its 
associated entities. The protection devices deployed in the 
microgrid may not be able to sync with the speed of 
response of these advanced control mechanisms. But there 
are advanced protection devices that respond quickly, but 
the cost of such devices increases with the advancements 
in technology. Along with protection, bi-directional 
communication schemes, EVs [67] as active power load, 
MG cluster control and utilization of smart meters are the 
other areas which have advanced research capability. For 
implementation in a real-world scenario, stability analysis 
is also required to ensure system reliability. The voltage 
must be stable or should be within the limits for better 
operation and reliability under sudden disturbances in the 
grid. Another issue arises when constant loads with PE 
interfaces are deployed which leads to reduced voltage 
stability. So, thorough research needs to be investigated to 
mitigate all these issues.   

4. Technical Hindrances involved in DC Microgrid 
Implementation 

There are several technical challenges present in the 
current DC grid scenario. The centralized controller may 
not be viable without proper communication medium. The 
communication medium or link used for achieving better 
reliability and operation of the system should be optimal, 
economical [68], more feasible and should have reduced 
complexity level. Another key feature is better to load 
current sharing and proper voltage regulation, which is a 
major hindrance for conventional controllers. The 
controller should also ensure that the utilization of storage 
technologies, RES and DC grid voltage maintenance 
remains optimized and under control.  

4.1 Stability issues in DC microgrid 

        The presence of constant power loads can yield to 
instability issues in a DC microgrid since these loads may 
get coupled with a negative impedance characteristic [69]. 
Presence of resonant condition caused due to virtual 
negative inductance induced during the operation of a 
constant power load have adverse effect in a DC microgrid 
from stability perspective [70]. Increasing damping 
mechanism in the system is a commonly adopted measure 
overcome such situation. But this can in turn result in a 
voltage sag. A proper tradeoff is required between 
allowable swing range and duration of voltage sag in order 
to meet the allowable system standards [71]. 

 4.2 Challenges involved in protection of a DC microgrid 

        Primary and secondary level control algorithms in are 
usually computed using advanced microprocessors which 
takes decision in pace faster than the allowable response 
time in a protection device. In such an environment, in a 
DC network, designing circuit breakers is always a big 
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challenge as it has to be economical and effective. This is 
mainly because the current levels need not be damped to 
zero as the DC voltage levels are not falling to zero. This 
can act as one of major hindrance in DC micro grid 
protection. Operator personnel safety is key essential 
requirement which is challenging as it is difficult to 
minimize DC stray current by proper grounding. The 
integrated local controllers and other control functions 
should ensure that the system is stable during islanded and 
grid-connected modes and should transfer seamlessly. The 
battery characteristics like charging, discharging should be 
done with the utmost care and proper measures should be 
taken to prevent overcharging and undercharging by 
choosing a better control strategy. The battery units [72, 
73] connected in multiple stacks should always have the 
same State of Charge (SoC) to prevent further damages. 

5. DC Microgrid: Future Trends 

Several research works are undergoing in the field of 
control strategies adopted in DC grids, their structures, 
various energy management schemes, energy storage 
techniques. The structure of any power system attracts 
many parameters such as robustness, reliability, 
scalability, cost, the resiliency of the system. The 
microgrid comes in various structures, namely Single-bus, 
Ring-bus, Multi-bus, Zonal-bus, Ladder-bus, and Multi-
terminal DC MG structure. All these structures have their 
own applications and drawbacks. More and more research 
needs to be done in this area to mitigate their drawbacks, 
reduce complexity-level and introduce redundancy. From 
the above surveys, it is clear that a single controller alone 
cannot ensure the following functionalities such as voltage 
regulation and control, current and power control, proper 
current and power-sharing, PQ control [74], ancillary 
services provisions, energy market participation, operation 
grids. A future trend in the DC system may be secondary 
distributed control with DC bus signaling (DBS) power 
management [75]. The DC grid voltage is balanced 
between power consumption and generation units with the 
aid of a storage medium for power management. Some 
issues that still persist in the robust control of all modes of 
operation such as islanded [76], grid-connected and 
transient modes. The EMS [77, 78] should consider power 
losses in storage devices, reaction time, SoC levels and 
charging schemes adopted. Thus, energy management 
plays a crucial role in reducing the overall system size and 
power ratings of devices, improving storage unit's lifespan 
and feeding critical loads. A critical primary objective of 
the future DC grid is a plug-and-play capability, from 
various hierarchy level. The DG units and power 
electronic converters [79] should be able to effortlessly 
disconnect and connect in component level from a DC 
MG. Similarly, the MG should seamlessly switch between 
grid-connected to an islanded mode [80] in the system 
level. A controller is effective if it coordinates the system 
and components and maintains stability. 

In the future, the concept of MG can be a combination 
of several grids that provides resiliency, reliability, and 
flexibility. More and more researchers would get attracted 

to the issues in controlling and maintaining the stability of 
the MG systems. These clusters are the future of the 
energy economy and would devise a flexible integrated 
grid. The key to this achievement is the well-designed 
management and control principle but needs further 
development and research efforts. 

6. Conclusion 

Smart Grids are the future of conventional grid 
networks, and a better possible way to realize them is 
through the advent improvement in MGs, which are a 
bunch of numerous electrical and electronic devices. The 
distributed paradigm is gaining popularity due to better 
flexibility and autonomous operation needs in both 
consumers as well as utility side. An abundant amount of 
research works are undergoing in the field of DC 
microgrid system, as they possess more features than the 
AC system. The heart of MG control is the energy 
management scheme for the case of a centralized 
controller. But, in the case of decentralized, it is less 
reliable than the above control strategy. There is a wider 
scope of research for DC grids in this scenario. The 
depletion in traditional energy sources, need for storage 
devices, the increased popularity of RESs etc. paves way 
for DC grid as the future grid. 
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