A contribution to the investigations of wind power to hydrogen along the Mauritanian coast

Sid'Ahmed Mohamed Amar Dhaya, Abdelkader Beyoud

Abstract


The contribution to the investigations of the Wind-Power-to-Hydrogen (WP2H) potential is encouraging Mauritania to join the world of power to X. The aim is the economic profitability for a system of wind turbines coupled to a hydrogen electrolyzer. The country’s coastal regions are very windy but disturbed by the movements of the dunes during the year. The latter has a roughness from north to south that goes from class four to class one, and the wind potential goes from excellent to very moderate. So the geographical conditions are added to the climatological conditions to motivate the present work. The wind data used come from Merra-data satellites, verified and compared with those measured on the ground by the national meteorological office for ten years. In the last step

of the analysis, the commercial costs involved in producing H2 are presented, by assessing the economic indicators kies LCO(Eol) and the LCO(Elz). So,the satellite time-series data set has shown a tolerable average deviation. Besides, the Proportionality of the commercial hydrogen conversion cost with wind power cost is the apparent characteristic. Despite the disturbed of the dunes’ movement in the coastal northern regions, wind-power-to-producing is estimated at around 3.59 $/kgH2, whereas the south assessed at 6.78 $/Kg H2. This study’s results may encourage the Mauritanian government to invest in this project, leading to an excellent economic take-off

 

https://dorl.net/dor/20.1001.1.13090127.2021.11.2.41.0


Keywords


Wind speed, Wind Power, Electrolyzer, Hydrogen production, Windographer, Levelized cost of electricity, Levelized cost of hydrogen.

Full Text:

PDF

References


Harrouz, A., Belatrache, D., Boulal, K., Colak, I. and Kayisli, K., 2020, September. Social Acceptance of Renewable Energy dedicated to Electric Production. In 2020 9th International Conference on Renewable Energy Research and Application (ICRERA) (pp. 283-288). IEEE.

U. Eberle, M. Felderhoff, and F. Schueth, “Chemical and physical solutions for hydrogen storage.” Angewandte Chemie International Edition, 48(36), pp.6608-6630, 2009.

S. Rahmouni, N. Settou, B. Negrou, and A. Gouareh, “GIS-based method for future prospect of hydrogen demand in the Algerian road transport sector”, Int. J. Hydrogen Energy, DOI: 10.1016/j.ijhydene.2015.11.156., Vol.2, Issue 4, 30, pp. 2128-2143, January 2016.

S. Touili, A. Alami Merrouni, Y. El Hassouani, E. G. Bennouna, A. Ghennioui, and A. I. Amrani, “A comparative study on hydrogen production from small-scale PV and CSP systems”, in Lecture Notes in Electrical Engineering, DOI: 10.1007/978-981-13-1405-6_83, ICEERE 2018, Vol 519, pp.723-730, 2019.

IEA, Global demand for pure hydrogen, 1975-2018, IEA, Paris https://www.iea.org/data-and-statistics/charts/global-demand-for-pure-hydrogen-1975-2018

D. B. Levin and R. Chahine, “Challenges for renewable hydrogen production from biomass”, Int. J. Hydrogen Energy, 2010, DOI: 10.1016/j.ijhydene.2009.08.067, Vol. 35, Issue 10, May 2010, pp. 4962-4969, 2010.

B. Yildiz, K. J. Hohnholt, and M. S. Kazimi, “Hydrogen Production Using High-Temperature Steam Electrolysis Supported by Advanced Gas Reactors with Supercritical CO 2 Cycles”, Nucl. Technol., DOI: 10.13182/NT06-A3742, Vol. 155, No. 1, pp. 1–21, 2006

M. Wang, Z. Wang, X. Gong, and Z. Guo, “The intensification technologies to water electrolysis for hydrogen production- A review”, Renewable and Sustainable Energy Reviews, DOI: 10.1016/j.rser.2013.08.090, Vol. 29, January 2014, pp. 573-588, 2014.

K. Bareiß, C. de la Rua, M. Möckl, and T. Hamacher, “Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems”, Appl. Energy, DOI: 10.1016/j.apenergy.2019.01.001, Volume 237, 1 March 2019, Pages 862-872, 2019.

N. Vidadili, E. Suleymanov, C. Bulut, and C. Mahmudlu, “Transition to renewable energy and sustainable energy development in Azerbaijan”, Renewable and Sustainable Energy Reviews, DOI: 10.1016/j.rser.2017.05.168, Vol. 80, December 2017, pp. 1153-1161, 2017.

D. Ipsakis, S. Voutetakis, P. Seferlis, F. Stergiopoulos, and C. Elmasides, “Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage”, Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2008.06.051, Volume 34, Issue 16, August 2009, pp. 7081-7095, 2009.

T. Pregger, D. Graf, W. Krewitt, C. Sattler, M. Roeb, and S. Möller, “Prospects of solar thermal hydrogen production processes”, Int. J. Hydrogen Energy, DOI: 10.1016/j.ijhydene.2009.03.025, Vol. 34, Issue 10, May 2009, pp. 4256-4267, 2009.

Z. Navas-Anguita, D. García-Gusano, J. Dufour, and D. Iribarren, “Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport”, Appl. Energy, DOI: 10.1016/j.apenergy.2019.114121, Vol. 259, 1 February 2020, pp. 114121, 2020.

T. Wilberforce,Z. El-Hassan,FN. Khatib,A. Al Makky,A. Baroutaji,JG. Carton, AG. Olabi, “Developments of electric cars and fuel cell hydrogen electric cars”, Int. J. Hydrogen Energy, DOI: 10.1016/j.ijhydene.2017.07.054, Vol. 42, Issue 40, 5 October 2017, pp. 25695-25734, 2017.

J. Hong, C. Z. Li, Q. Shen, F. Xue, B. Sun, and W. Zheng, “An Overview of the driving forces behind energy demand in China’s construction industry: Evidence from 1990 to 2012”, Renewable and Sustainable Energy Reviews, DOI: 10.1016/j.rser.2017.01.021, Vol. 73, June 2017, Pages 85-94, 2017.

M. Ball and M. Weeda, “The hydrogen economy - Vision or reality?”, Int. J. Hydrogen Energy, DOI: 10.1016/j.ijhydene.2015.04.032, Volume 40, Issue 25, 6 July 2015, Pages 7903-7919, 2015.

S. Touili, A. Alami Merrouni, A. Azouzoute, Y. El Hassouani, and A. illah Amrani, “A technical and economical assessment of hydrogen production potential from solar energy in Morocco”, International Journal of Hydrogen Energy. DOI: 10.1016/j.ijhydene.2018.10.136, Vol. 43, Issue 51, 20 December 2018, pp. 22777-22796 2018.

KE. Ayers, EB. Anderson, C. Capuano, B. Carter, B. Dalton, G. Hanlon, J. Manco, M. Niedzwiecki, “Research Advances towards Low Cost, High Efficiency PEM Electrolysis”, ECS Trans., 2019, DOI: 10.1149/1.3484496, vol. 33, pp. 3-15, 2019.

Z. Yin, J. Wei, and Q. Zheng, “Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives”, Advanced Science, DOI: 10.1002/advs.201500362, Vol. 3, pp.(1 -37) 1500362, 2016.

K. B. Hueso, V. Palomares, M. Armand, and T. Rojo, “Challenges and perspectives on high and intermediate-temperature sodium batteries”, Nano Research, DOI: 10.1007/s12274-017-1602-7, Vol.10, pp. 4082–4114, 2017.

M. Boulakhbar, B. Lebrouhi, T. Kousksou, S. Smouh, A. Jamil, M. Maaroufi, M. Zazia, “Towards a large-scale integration of renewable energies in Morocco”, J. Energy Storage, DOI: 10.1016/j.est.2020.101806, Vol. 32, December 2020, pp. 101806, 2020.

Z. Ullah, M. R. Elkadeem, and S. Wang, “Power loss minimization and reliability enhancement in active distribution networks considering RES uncertainty”, International Journal of Renewable Energy Research, Vol. 9, No 3, pp.1233-1240, 2019.

A. J. Gabric, L. Garcia, L. Van Camp, L. Nykjaer, W. Eifler, and W. Schrimpf, “Offshore export of shelf production in the Cape Blanc (Mauritania) giant filament as derived from coastal zone color scanner imagery”, J. Geophys. Res., DOI: 10.1029/92jc01714, Vol. 98, Issue C3 15 March 1993, pp. 4697-4712, 1993.

MM. Rienecker , MJ. Suarez, R. Gelaro ,R. Todling, J. Bacmeister, E. Liu, MG. Bosilovich , SD. Schubert, L. Takacs, GK. Kim, S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications”, J. Clim., DOI: 10.1175/JCLI-D-11-00015.1, vol. 24, Issue 14, pp. 3624–3648, 2011.

W. Chu and Y. Zhang, "The Efficiency and Economic Feasibility Study on Wind-Hydrogen System," 2020 IEEE Sustainable Power and Energy Conference (iSPEC), pp. 1198-1203, 2020.

N. Tazi, E. Châtelet, R. Meziane and Y. Bouzidi, "Reliability optimization of wind farms considering constraints and regulations," 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 130-136.

C. Simpson, A. E. Alvarez and M. Collu, "Influence of the Mission Profile on The Lifetime Modelling of the Wind Turbine Power Converter – A Review," 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), pp. 144-151, 2020.

Khouya A. Levelized costs of energy and hydrogen of wind farms and concentrated photovoltaic thermal systems. A case study in Morocco. International Journal of Hydrogen Energy, 45(56), pp. 31632-50, Nov 13 2020.

Mun H, Moon B, Park S, Yoon Y. A Study on the Economic Feasibility of Stand-Alone Microgrid for Carbon-Free Island in Korea. Energies. Vol., 14(7), p 1913, Jan, 2021.

S. Fuhlbrügge, K. Krüger, B. Quack, E. Atlas, H. Hepach, and F. Ziska, “Impact of the marine atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and subtropical North Atlantic Ocean”, Atmos. Chem. Phys, DOI: 10.5194/acp-13-6345-2013, Vol. 13, Issue 13, pp. 6345–6357, 2013.

R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C.A. Randles, A.Darmenov, M.G. Bosilovich, R.Reichle, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A.M. da Silva, W. Gu, G. Kim, R. Koster, R. Lucchesi, D. Merkova, J.E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S.D. Schubert, M. Sienkiewicz and B. Zhao “The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)”, Journal of Climate, DOI:10.1175/JCLI-D-16-0758.1, Vol.30, No. 14, 2020

M. Marchand, M. Lefèvre, L. Saboret, E. Wey, and L. Wald, “Verifying the spatial consistency of the CAMS Radiation Service and HelioClim-3 satellite-derived databases of solar radiation using a dense network of measuring stations: the case of The Netherlands”, Adv. Sci. Res., DOI:10.5194/asr-16-103-2019 Vol. 16, pp. 103–111, 2019.

C.B. Moorthy, C. Balasubramanian, and M.K, Deshmukh, “Wind turbine output estimation using Windographer software”, International Journal on Future Revolution in Computer Science & Communication Engineering, Vol. 3 (11), pp.155-160, 2017.

A. K?z?lersü, M. Kreer, and A. W. Thomas, “The Weibull distribution”, Royal Statistical Society Significance, DOI: 10.1111/j.1740-9713.2018.01123.x, Vol.15, Issue2, April 2018, pp. 10-11, 2018.

N. Doganaksoy, “Weibull Models”, Technometrics, DOI: 10.1198/tech.2004.s226, Vol. 46, Issue 4, Pages 485-486, 2004.

W. R. Powell, “An analytical expression for the average output power of a wind machine”, Sol. Energy, DOI:10.1016/0038-092X(81)90114-6, Vol. 26, Issue 1, 1981, pp. 77-80, 1981.

Penny Farmer, “Design of Wind Energy Conversion Systems”, Wind Energy 1975–1985, /10.1007/978-3-642-82660-3_3, pp. 65-107, 1986.

O. Charrouf, A. Betka, A. Taleb-Ahmed, and G. Amar, “Wind energy potential and economic analysis of WECS in four selected locations in Algeria”, in 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA,doi:10.1109/ICRERA.2016.7884460, pp. 118-123, 2016.

F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources”, Sol. Energy, doi: 10.1016/j.solener.2004.09.003, Vol. 78, Issue 5, May 2005, Pages 661-669, 2005.

Natural Resource Canada, “Clean energy project analysis retscreen engineering & cases textbook” (3rded.), http://publications.gc.ca/site/eng/253254/publication.html.

G. Patrono, S. Vergura and A. M. Pavan, "LCOE for Zero-Energy Greenhouse," 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 2015, pp. 1291-1295, doi: 10.1109/ICRERA.2015.7418616

Fay M. Hallegatte, S. Vogt-Schilb, A. Rozenberg J, Narloch U, Kerr T. “Decarbonizing development: Three steps to a zero-carbon future”, The World Bank; 2015 Jun 9.

Metivier, C., Bultheel, C. and Postic, S., 2018. Global carbon account 2018. Institute for Climate Economics. Retrieved from https://www. i4ce. org/download/global-carbon-account-2018.




DOI (PDF): https://doi.org/10.20508/ijrer.v11i2.12018.g8220

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4