A diverse outlook on the performance of perovskite solar cells to meet the energy demand

DEEPAK KUMAR, Deepak Kumar, Devendra Rawat

Abstract


Population growth considerably expands the limits of residential regions and human living standards, resulting in a massive increase in energy consumption. Unlike non-renewable sources, solar energy is renewable and widely available around the planet. The remarkable development of organic-inorganic hybrid perovskite materials for transforming solar radiation into electricity has revolutionized third generation photovoltaic (PV) devices. In addition to development of various solar cells, the perovskite solar cells (PSCs) is an emerging solar cell technology whose efficiency has been reached up to 25.5% (in year 2020) in less than a decade of intense research and innovation. A collection of relevant literature papers is compiled to offer an outlook in the area of advancement in the development of PSCs. Distinct set of constraints are reported here that must be overcome concurrently to commercialize the perovskite technologies in order to meet specific technical objectives effectively

Keywords


: Perovskite solar cell, commercialization, energy demand, hole transport layer, efficiency, degradation and stability.

Full Text:

PDF

References


Kumar D. A short review on the advancement in the development of TiO2 and ZnO based photo-anodes for the application of Dye-Sensitized Solar Cells (DSSCs). Engineering Research Express. 2021 Nov 18.

Ranabhat K, Patrikeev L, Antal'evna-Revina A, Andrianov K, Lapshinsky V, Sofronova E. An introduction to solar cell technology. Journal of Applied Engineering Science. 2016; 14(4):481-491.

. Green MA. Third generation photovoltaics 2006.

. Wang A, Zhao J, Green MA. 24% efficient silicon solar cells. Applied physics letters. 1990 Aug 6;57(6):602-4.

Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AW. Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications. 2018 Jul;26(7):427-36.)

Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied physics letters. 1993 May 31;62(22):2851-2.

Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Hebert P, Yoon H, Karam N. III_V multi junction solar cells for concentrating photovoltaics. Energy and Environmental Science. 2009;2(2):174-92.

O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. nature. 1991 Oct;353 (6346):737-40.

Smestad G, Bignozzi C, Argazzi R. Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Solar energy materials and solar cells. 1994 Mar 1;32(3):259-72.

Gong J, Sumathy K, Zhou Z, Qiao Q. Modeling of

interfacial and bulk charge transfer

. Roy P, Sinha NK, Tiwari S, Khare A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy. 2020 Mar 1;198:665-88.

.Park NG. Crystal growth engineering for high efficiency perovskite solar cells. CrystEngComm. 2016;18(32):5977-85.

. Kanoun AA, Kanoun MB, Merad AE, Goumri-Said S. Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Solar Energy. 2019 Apr 1;182:237-44.

. Wang M, Feng Y, Bian J, Liu H, Shi Y. A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chemical Physics Letters. 2018 Jan 16;692:44-9.

. Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. Journal of Materials Chemistry A. 2015;3(17):9165-70.

. Lee DG, Kim MC, Kim BJ, Kim DH, Lee SM, Choi M, Lee S, Jung HS. Effect of TiO2 particle size and layer thickness on mesoscopic perovskite solar cells. Applied Surface Science. 2019 May 31;477:131-6.

. Lakhdar N, Hima A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Optical Materials. 2020 Jan 1;99:109517.

. Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G. All-inorganic perovskite solar cells. Journal of the American Chemical Society. 2016 Dec 14;138(49):15829-32.

. Lau CF, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho-Baillie A. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Letters. 2017 Sep 11;2(10):2319-25.

. Wan X, Jiang Y, Qiu Z, Zhang H, Zhu X, Sikandar I, Liu X, Chen X, Cao B. Zinc as a new dopant for NiO x-based planar perovskite solar cells with stable efficiency near 20%. ACS Applied Energy Materials. 2018 Jul 9;1(8):3947-54.

. Qiu L, Deng J, Lu X, Yang Z, Peng H. Integrating perovskite solar cells into a flexible fiber. Angewandte Chemie International Edition. 2014 Sep 22;53(39):10425-8.

Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. Il. Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF 2 – Pyrazine Complex. J. Am. Chem. Soc. 2016, 138, 3974–3977

Zhu, Z.; Chueh, C.-C.; Li, N.; Mao, C.; Jen, A. K.-Y. Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv. Mater. 2018, 30, 1703800.

Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G. Slow Surface Passivation and Crystal Relaxation with Additives to Improve Device Performance and Durability for Tin-Based Perovskite Solar Cells. Energy Environ. Sci. 2018, 11, 2353–2362.

Xu, H.; Jiang, Y.; He, T.; Li, S.; Wang, H.; Chen, Y.; Yuan, M.; Chen, J. Orientation Regulation of Tin-Based Reduced-Dimensional Perovskites for Highly Efficient and Stable Photovoltaics. Adv. Funct. Mater. 2019, 1807696.

Wang, F.; Jiang, X.; Chen, H.; Shang, Y.; Liu, H.; Wei, J.; Zhou, W.; He, H.; Liu, W.; Ning, Z. 2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability. Joule 2018, 2, 2732–2743.

Tai, Q.; Guo, X.; Tang, G.; You, P.; Ng, T.-W.; Shen, D.; Cao, J.; Liu, C.-K.; Wang, N.; Zhu, Y.; et al. Antioxidant Grain Passivation for Air-Stable Tin Based Perovskite Solar Cells. Angew. Chemie Int. Ed. 2019, 58, 806–810.

Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L. Addictive-Assisted Construction of All- Inorganic CsSnIBr 2 Mesoscopic Perovskite Solar Cells with Superior Thermal Stability up to 473 K. J. Mater. Chem. A 2016, 4, 17104–17110.

Deng, L.; Wang, K.; Yang, H.; Yu, H.; Hu, B. Polymer Assist Crystallization and Passivation for Enhancements of Open-Circuit Voltage and Stability in Tin-Halide Perovskite Solar Cells. J. Phys. D. Appl. Phys. 2018, 51, 475102.

Song, T.-B.; Yokoyama, T.; Logsdon, J.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G. Piperazine Suppresses Self-Doping in CsSnI3 Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 4221–4226.

Kayesh, M. E.; Chowdhury, T. H.; Matsuishi, K.; Kaneko, R.; Kazaoui, S.; Lee, J.-J.; Noda, T.; Islam, A. Enhanced Photovoltaic Performance of FASnI3 -Based Perovskite Solar Cells with Hydrazinium Chloride Coadditive. ACS Energy Lett. 2018, 3, 1584–1589.

Kim, H., Lee, Y.H., Lyu, T., Yoo, J.H., Park, T. and Oh, J.H., 2018. Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. Journal of Materials Chemistry A, 6(37), pp.18173-18182.

. NREL, Best research-cell efficiency chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: May 2020).

. Li C, Cong S, Tian Z, Song Y, Yu L, Lu C, Shao Y, Li J, Zou G, Rümmeli MH, Dou S. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy. 2019 Jun 1;60:247-56.

https://statnano.com/news/67695/Flexible Solar-Cells-

Far-fetched-Then-But-Possible-Now. June 2020.

Malinkiewicz, O., Imaizumi, M., Sapkota, S.B. et al. Radiation effects on the performance of flexible perovskite solar cells for space applications. emergent mater. 3, 9–14 (2020).

H. Sun, S. Lin, R. Zhang, K. Yang, M. Xia, W. Li, W.

Guo, “Perovskite solar cells employing Al2O3 scaffold

layers”, 2014 International Conference on Renewable

Energy Research and Application (ICRERA),

Milwaukee, WI, pp. 442-444, 2014. (Conference paper)

.Sakagami T, Shimizu Y, Kitano H. Exchangeable batteries for micro EVs and renewable energy. In2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA) 2017 Nov 5 (pp. 701-705). IEEE.

.Belkaid A, Colak I, Kayisli K, Sara M, Bayindir R. Modeling and simulation of polycrystalline silicon photovoltaic cells. In2019 7th International Conference on Smart Grid (icSmartGrid) 2019 Dec 9 (pp. 155-158). IEEE.

. Ayadi F, Colak I, Garip I, Bulbul HI. Impacts of Renewable Energy Resources in Smart Grid. In2020 8th International Conference on Smart Grid (icSmartGrid) 2020 Jun 17 (pp. 183-188). IEEE.

Yesilbudak M, Colak M, Bayindir R, Bulbul HI. Very short term modeling of global solar radiation and air temperature data using curve fitting methods. In2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA) 2017 Nov 5 (pp. 1144-1148). IEEE




DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12464.g8333

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4