Development in Photoanode Materıals for Highly Efficient Dye Sensitized Solar Cells

Stephanie Chai Tying Lau, Jedol Dayou, Coswald Stephen Sipaut, Rachel Fran Mansa

Abstract


Dye-sensitized solar cells (DSSC) have been extensively studied due to their promising potential for high efficiency, low production cost and eco-friendly production. The photoanode is one of the main components in DSSCs which determines its performance. The main issues facing in DSSCs are the charge recombinations and low light harvesting capacity. Conventional TiO2 nanoparticles with large surface area has low light scattering ability and low electron transport rate while one dimensional nanostructures have high electron transport rate and good light scattering ability but has a low surface area. Different approaches such as nanocomposite, light scattering layer and hierarchical structures to improve performance of 1D DSSCs are discussed. Besides that, works done on the optimization of TiO2 photoanode in cobalt based DSSC is also discussed. Additionally, doping of TiO2 to improve the properties of TiO2 and studies on alternative photoanode materials which involved the application of band gap engineering are discussed to further improve the performance of DSSCs.


Keywords


Dye Sensitized Solar Cells; Photoanode; Charge recombination; Light harvesting

Full Text:

PDF

References


B. O'Regan, and M. Graetzel, "Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, vol. 353, pp. 737, 1991.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, "Dye-sensitized solar cells with conversion efficiency of 11.1%", Japanese Journal of Applied Physics, Part 2: Letters, vol. 45, pp. L638-L640, 2006.

L. Yang, B.-g. Zhai, Q.-l. Ma, and Y.M. Huang, "Effect of ZnO decoration on the photovoltaic performance of TiO2 based dye sensitized solar cells", Journal of Alloys and Compounds, vol. 605, pp. 109-112, 2014.

R.F. Mansa, G. Govindasamy, Y.Y. Farm, H.A. Bakar, J. Dayou, and C.S. Sipaut, Hibiscus flower extract as the natural dye sensitizer for dye-sensitized solar cell, in, Journal of Physical Science, 2013.

M. Grätzel, "Photoelectrochemical cells", Nature, vol. 414, pp. 338-344, 2001.

R.F. Mansa, A.R.A. Yugis, K.S. Liow, S.C.T. Lau, M.C. Ung, J. Dayou, and C.S. Sipaut, A Brief Review on Photoanode, Electrolyte, and Photocathode Materials for Dye-Sensitized Solar Cell Based on Natural Dye Photosensitizers, in: P. Ravindra, A. Bono, C.M. Chu (Eds.) Developments in Sustainable Chemical and Bioprocess Technology, Springer, 2013.

A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency", Science, vol. 334, pp. 629-634, 2011.

W.Q. Wu, J.Y. Liao, H.Y. Chen, X.Y. Yu, C.Y. Su, and D.B. Kuang, "Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance", Journal of Materials Chemistry, vol. 22, pp. 18057-18062, 2012.

S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, "Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells", Progress in Photovoltaics: Research and Applications, vol. 15, pp. 603-612, 2007.

Q. Huang, G. Zhou, L. Fang, L. Hu, and Z.S. Wang, "TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells", Energy and Environmental Science, vol. 4, pp. 2145-2151, 2011.

M. Wang, Y. Wang, and J. Li, "ZnO nanowire arrays coating on TiO2 nanoparticles as a composite photoanode for a high efficiency DSSC", Chemical Communications, vol. 47, pp. 11246-11248, 2011.

H.Y. Chen, D.B. Kuang, and C.Y. Su, "Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells", Journal of Materials Chemistry, vol. 22, pp. 15475-15489, 2012.

K. Hara, and H. Arakawa, Dye-sensitized Solar Cells, in: S.H. Antonio Luque (Ed.) Handbook of Photovoltaic Science and Engineering, England:John Wiley & Sons Ltd, 2003.

B. Grob, and M.E. Schultz, Basic electronics, vol. Gregg Division, 1977.

L.R. Andrade, and A.H.A. Mendes, Dye-sensitized Solar Cells: An Overview in Energy Production and Storage: Inorganic Chemical Strategies for A Warming World, pp. 53-72, 2010.

L. Andrade, J. Sousa, H. Aguilar Ribeiro, and A. Mendes, "Phenomenological modeling of dye-sensitized solar cells under transient conditions", Solar Energy, vol. 85, pp. 781-793, 2011.

J. Maçaira, L. Andrade, and A. Mendes, "Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells", Renewable and Sustainable Energy Reviews, vol. 27, pp. 334-349, 2013.

T. Sawatsuk, A. Chindaduang, C. Sae-kung, S. Pratontep, and G. Tumcharern, "Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes: Performance improvement and their mechanisms", Diamond and Related Materials, vol. 18, pp. 524-527, 2009.

S.R. Jang, R. Vittal, and K.J. Kim, "Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells", Langmuir, vol. 20, pp. 9807-9810, 2004.

T.Y. Lee, P.S. Alegaonkar, and J.B. Yoo, "Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes", Thin Solid Films, vol. 515, pp. 5131-5135, 2007.

S.L. Kim, S.R. Jang, R. Vittal, J. Lee, and K.J. Kim, "Rutile TiO2-modified multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells", Journal of Applied Electrochemistry, vol. 36, pp. 1433-1439, 2006.

H. Usui, H. Matsui, N. Tanabe, and S. Yanagida, "Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes", Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 97-101, 2004.

M. Saito, and S. Fujihara, "Large photocurrent generation in dye-sensitized ZnO solar cells", Energy & Environmental Science, vol. 1, pp. 280-283, 2008.

B. Onwona-Agyeman, S. Kaneko, A. Kumara, M. Okuya, K. Murakami, A. Konno, and K. Tennakone, "Sensitization of nanocrystalline SnO2 films with indoline dyes", Japanese Journal of Applied Physics, Part 2: Letters, vol. 44, pp. L731-L733, 2005.

P. Guo, and M.A. Aegerter, "RU(II) sensitized Nb2O5 solar cell made by the sol-gel process", Thin Solid Films, vol. 351, pp. 290-294, 1999.

M. Grätzel, "The advent of mesoscopic injection solar cells", Progress in Photovoltaics: Research and Applications, vol. 14, pp. 429-442, 2006.

R. Jose, V. Thavasi, and S. Ramakrishna, "Metal Oxides for Dye-Sensitized Solar Cells", Journal of the American Ceramic Society, vol. 92, pp. 289-301, 2009.

M. Grätzel, "Dye-sensitized solar cells", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, 2003.

H. Minoura, and T. Yoshida, "Electrodeposition of ZnO/dye hybrid thin films for dye-sensitized solar cells", Electrochemistry Tokyo, vol. 76, pp. 109, 2008.

B. Tan, E. Toman, Y. Li, and Y. Wu, "Zinc stannate (Zn2SnO4) dye-sensitized solar cells", Journal of the American Chemical Society, vol. 129, pp. 4162-4163, 2007.

H. Zheng, Y. Tachibana, and K. Kalantar-Zadeh, "Dye-sensitized solar cells based on WO3", Langmuir, vol. 26, pp. 19148-19152, 2010.

S. Burnside, J.-E. Moser, K. Brooks, M. Grätzel, and D. Cahen, "Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering", The Journal of Physical Chemistry B, vol. 103, pp. 9328-9332, 1999.

N. Nang Dinh, M.C. Bernard, A. Hugot-Le Goff, T. Stergiopoulos, and P. Falaras, "Photoelectrochemical solar cells based on SnO2 nanocrystalline films", Comptes Rendus Chimie, vol. 9, pp. 676-683, 2006.

N.G. Park, G. Schlichthörl, J. Van De Lagemaat, H.M. Cheong, A. Mascarenhas, and A.J. Frank, "Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4", Journal of Physical Chemistry B, vol. 103, pp. 3308-3314, 1999.

N.G. Park, J. Van De Lagemaat, and A.J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells", Journal of Physical Chemistry B, vol. 104, pp. 8989-8994, 2000.

H.J. Koo, Y.J. Kim, Y.H. Lee, W.I. Lee, K. Kim, and N.G. Park, "Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells", Advanced Materials, vol. 20, pp. 195-199, 2008.

J.H. Park, S.Y. Jung, R. Kim, N.G. Park, J. Kim, and S.S. Lee, "Nanostructured photoelectrode consisting of TiO2 hollow spheres for non-volatile electrolyte-based dye-sensitized solar cells", Journal of Power Sources, vol. 194, pp. 574-579, 2009.

Z.S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell", Coordination Chemistry Reviews, vol. 248, pp. 1381-1389, 2004.

A. Usami, "Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells", Solar Energy Materials and Solar Cells, vol. 64, pp. 73-83, 2000.

J. Ferber, and J. Luther, "Computer simulations of light scattering and absorption in dye-sensitized solar cells", Solar Energy Materials and Solar Cells, vol. 54, pp. 265-275, 1998.

K. Guo, M. Li, X. Fang, L. Bai, M. Luoshan, F. Zhang, and X. Zhao, "Improved properties of dye-sensitized solar cells by multifunctional scattering layer of yolk-shell-like TiO< sub> 2 microspheres", Journal of Power Sources, vol. 264, pp. 35-41, 2014.

D.B. Menzies, R. Cervini, Y.B. Cheng, G.P. Simon, and L. Spiccia, "Nanostructured ZrO2-coated TiO2 electrodes for dye-sensitised solar cells", Journal of Sol-Gel Science and Technology, vol. 32, pp. 363-366, 2004.

E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, and J.R. Durrant, "Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films", Chemical Communications, pp. 1464-1465, 2002.

E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, and J.R. Durrant, "Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers", Journal of the American Chemical Society, vol. 125, pp. 475-482, 2003.

S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, and M. Grätzel, "Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells", Chemical Communications, pp. 4351-4353, 2005.

Y. Wang, H. Yang, and H. Xu, "DNA-like dye-sensitized solar cells based on TiO2 nanowire-covered nanotube bilayer film electrodes", Materials Letters, vol. 64, pp. 164-166, 2010.

J.Y. Liao, B.X. Lei, H.Y. Chen, D.B. Kuang, and C.Y. Su, "Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells", Energy and Environmental Science, vol. 5, pp. 5750-5757, 2012.

K. Zhu, N.R. Neale, A. Miedaner, and A.J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays", Nano Letters, vol. 7, pp. 69-74, 2007.

M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, "Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment†mechanism", Journal of the American Chemical Society, vol. 126, pp. 14943-14949, 2004.

B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, and D.Y. Kim, "Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes", Journal of Physical Chemistry C, vol. 113, pp. 21453-21457, 2009.

C.J. Lin, W.Y. Yu, and S.H. Chien, "Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells", Journal of Materials Chemistry, vol. 20, pp. 1073-1077, 2010.

B. Tan, and Y. Wu, "Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites", Journal of Physical Chemistry B, vol. 110, pp. 15932-15938, 2006.

Y. Alivov, and Z.Y. Fan, "Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles", Applied Physics Letters, vol. 95, 2009.

T.-H. Tsai, S.-C. Chiou, and S.-M. Chen, "Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode", Int. J. Electrochem. Sci, vol. 6, pp. 3333-3343, 2011.

M. Zhu, X. Li, W. Liu, and Y. Cui, "An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes", Journal of Power Sources, vol. 262, pp. 349-355, 2014.

S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, "Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure", Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 145-151, 2004.

S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, and S. Yoshikawa, "Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure", Journal of Photochemistry and Photobiology A: Chemistry, vol. 184, pp. 163-169, 2006.

P. Sun, X. Zhang, C. Wang, Y. Wei, L. Wang, and Y. Liu, "Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: Enhanced cell performance via the rutile-anatase heterojunction", Journal of Materials Chemistry A, vol. 1, pp. 3309-3314, 2013.

A.M. Bakhshayesh, M.R. Mohammadi, and D.J. Fray, "Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes", Electrochimica Acta, vol. 78, pp. 384-391, 2012.

Y. Qiu, W. Chen, and S. Yang, "Double-layered photoanodes from variable-size anatase TiO2 nanospindles: A candidate for high-efficiency dye-sensitized solar cells", Angewandte Chemie - International Edition, vol. 49, pp. 3675-3679, 2010.

F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, and Y.B. Cheng, "Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dyesensitized solar cells", Advanced Functional Materials, vol. 20, pp. 1301-1305, 2010.

F. Xu, X. Zhang, Y. Wu, D. Wu, Z. Gao, and K. Jiang, "Facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells", Journal of Alloys and Compounds, vol. 574, pp. 227-232, 2013.

J.Y. Liao, B.X. Lei, D.B. Kuang, and C.Y. Su, "Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells", Energy and Environmental Science, vol. 4, pp. 4079-4085, 2011.

J.Y. Liao, H.P. Lin, H.Y. Chen, D.B. Kuang, and C.Y. Su, "High-performance dye-sensitized solar cells based on hierarchical yolk-shell anatase TiO2 beads", Journal of Materials Chemistry, vol. 22, pp. 1627-1633, 2012.

Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.G. Park, K. Kim, and W.I. Lee, "Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres", Advanced Materials, vol. 21, pp. 3668-3673, 2009.

B.M. Klahr, and T.W. Hamann, "Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells", The Journal of Physical Chemistry C, vol. 113, pp. 14040-14045, 2009.

K.S. Liow, C.S. Sipaut, R.F. Mansa, and J. Dayou, "Dye Sensitized Solar Cell Based on Polyethylene Glycol/4,4’Diphenylmethane Diisocyanate Copolymer Quasi Solid State Electrolyte", Applied Mechanics and Materials, vol. 625, pp. 140-143, 2014.

S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, and A. Hagfeldt, "Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells", Journal of the American Chemical Society, vol. 132, pp. 16714-16724, 2010.

T.T. Trang Pham, T.M. Koh, K. Nonomura, Y.M. Lam, N. Mathews, and S. Mhaisalkar, "Reducing Mass-Transport Limitations in Cobalt-Electrolyte-Based Dye-Sensitized Solar Cells by Photoanode Modification", ChemPhysChem, vol. 15, pp. 1216-1221, 2014.

Y. Duan, N. Fu, Q. Zhang, Y. Fang, X. Zhou, and Y. Lin, "Influence of Sn source on the performance of dye-sensitized solar cells based on Sn-doped TiO2 photoanodes: A strategy for choosing an appropriate doping source", Electrochimica Acta, vol. 107, pp. 473-480, 2013.

J.K. Lee, and M. Yang, "Progress in light harvesting and charge injection of dye-sensitized solar cells", Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 176, pp. 1142-1160, 2011.

X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, "Improved-Performance Dye-Sensitized solar cells using Nb-Doped TiO2 electrodes: Efficient electron Injection and transfer", Advanced Functional Materials, vol. 20, pp. 509-515, 2010.

M. Yang, D. Kim, H. Jha, K. Lee, J. Paul, and P. Schmuki, "Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells", Chemical Communications, vol. 47, pp. 2032-2034, 2011.

H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, and S. Dai, "Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells", Journal of Physical Chemistry C, vol. 114, pp. 1627-1632, 2010.

X. Zhang, F. Liu, Q.-L. Huang, G. Zhou, and Z.-S. Wang, "Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination", The Journal of Physical Chemistry C, vol. 115, pp. 12665-12671, 2011.

Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, and Y. Lin, "Sn-doped TiO2 photoanode for dye-sensitized solar cells", The Journal of Physical Chemistry C, vol. 116, pp. 8888-8893, 2012.

X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, "Improvedâ€Performance Dyeâ€Sensitized Solar Cells Using Nbâ€Doped TiO2 Electrodes: Efficient Electron Injection and Transfer", Advanced Functional Materials, vol. 20, pp. 509-515, 2010.

Y. Xie, N. Huang, Y. Liu, W. Sun, H.F. Mehnane, S. You, L. Wang, W. Liu, S. Guo, and X.-Z. Zhao, "Photoelectrodes modification by N doping for dye-sensitized solar cells", Electrochimica Acta, vol. 93, pp. 202-206, 2013.

S. Yang, S. Guo, D. Xu, H. Xue, H. Kou, J. Wang, and G. Zhu, "Improved efficiency of dye-sensitized solar cells applied with F-doped TiO2 electrodes", Journal of Fluorine Chemistry, vol. 150, pp. 78-84, 2013.

S.C.T. Lau, C.S. Sipaut, J. Dayou, and R.F. Mansa, "Sol gel synthesized nanosilica as photoanode material for dye sensitized solar cells (DSSCs) system", Applied Mechanics and Materials, vol. 625, pp. 110-113, 2014.

J.-P. Rino, and N. Studart, "Structural correlations in titanium dioxide", Physical Review B, vol. 59, pp. 6643-6649, 1999.

L.E. Brus, "Electron–electron and electronâ€hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state", The Journal of chemical physics, vol. 80, pp. 4403-4409, 1984.

V.A.L. Padavettan, Synthesis And Characterization Of Silica Nanoparticles And Their Application As Fillers In Silica-Bismaleimide Nanocomposite, PhD Thesis, Universiti Sains Malaysia, 2009.

A.N. Trukhin, L.N. Skuja, A.G. Boganov, and V.S. Rudenko, "The correlation of the 7.6 eV optical absorption band in pure fused silicon dioxide with twofold-coordinated silicon", Journal of Non-Crystalline Solids, vol. 149, pp. 96-101, 1992.

H. Lin, C. Huang, W. Li, C. Ni, S.I. Shah, and Y.-H. Tseng, "Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol", Applied Catalysis B: Environmental, vol. 68, pp. 1-11, 2006.




DOI (PDF): https://doi.org/10.20508/ijrer.v4i3.1473.g6389

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4