Modeling of InGaN/GaAs Photovoltaic Tandem with GaAs/AlAs Bragg Mirror Rear Surface Reflector

Fayçal Bouzid, Nedjedia Benaziez

Abstract


In this work, a parametric study of a dual junction tandem based on In0.53Ga0.47N on GaAs has been carried. In order to obtain reflection of unabsorbed photons from the bottom of the device, Bragg reflectors (BR) composed of GaAs/AlAs, with appropriate thicknesses, was placed in the rear surface of the GaAs sub-cell. With this intention, the current-voltage curves are calculated for different front recombination velocities and the influence of the bottom cell thickness on efficiency has been studied. The results of simulation show that the structure’s efficiency can attain 29% under 1-sun AM1.5 illumination, for a front recombination velocity value of 1e3cm/s and 10µm bottom cell thickness. This efficiency will decrease with increasing the operating temperature.

Keywords


Bragg Reflector; Carrier Lifetimes; Recombination Velocity; Efficiency; Temperature.

Full Text:

PDF

References


Q. Rüdiger, Gallium Nitride Electronics, Springer-Verlag, Berlin Heidelberg, 2008.

X. Shen, S. Lin, F. Li, Y. Wie, S. Zhong, H. Wan, J. Li, “Simulation of the InGaN-based tandem solar cellsâ€, Photovoltaic Cell and Module Technologies II, Edited by Bolko von Roedern, Alan E. Delahoy, Proceedings of Spie, Vol. 7045-E, 2008.

K. Nandy, S. Biswas, R. Bhattacharyya, S. N. Saha, A. Deyasi, â€Novel Band-Reject Filter Design Using Multilayer Bragg Mirror at 1550 nmâ€, Computer Science & Information Technology, ACER 2013, pp. 419-425,2013.

I. I. Ivanov, T. V. Nychyporuk, V. A. Skryshevsky, M. Lemiti, “Thin silicon solar cells with SiОх/SiNx Bragg mirror rear surface reflectorâ€, Semiconductor Physics, Quantum Electronics, Optoelectronics, V. 12, N 4, pp. 406-411, 2009.

R. H. Sara, M. J. A. de Dood, and H. Kim, “Ultrafast optical response of a high-reflectivity GaAs/AlAs Bragg mirrorâ€, Appl. Phys. Lett, 86, 031109.1-3, 2005.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Third Edition, John Wiley, Interscience, 2006.

J. Wu and W. Walukiewicz, “Bandgaps of InN and group III nitride alloysâ€, Super lattice. Microst, 34, pp.63-75, 2003.

J. Wu, “When group III-nitrides go infrared: new properties and perspectivesâ€, J. of Appl. Phys., Vol. 106, 011101-1-28, 2009.

T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, “Carrier mobility model for GaNâ€, Solid-State Electron, 47, pp.111-115, 2003.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Caser, B. P. Keller, U. K. Mishra and S. P. Den Baars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurementsâ€, Appl. Phys. Lett, 71, pp.2572-2574, 1997.

M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, John Wiley and Sons, Inc. New York, 2001.

T. Inushima , M. Higashiwaki and T. Matsui, “Optical properties of Si-doped InN grown on sapphire (0001)â€, Phys. Rev., B68: 235204-1-7, 2003.

S. N. Mohammad, A. A. Salvador and H. Morkoç, “Emerging Gallium Nitride Based Devicesâ€, Proceedings of the IEEE, Vol. 83(10) ,1995.

Ioffe Physico-Technical Institute: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaSb/bandstr.html

S. Siegfried, Analysis and simulation of semiconductor devices, Springer-Verlag, 1984.

B. O. Seraphin, “Solar energy conversion: Solid-state physics aspectsâ€, Topics in appl. Phys., Vol 31, Springer-Verlag, 1997.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenideâ€, J. of Appl. Phys., 52(10), pp.123-181, 1982.

J. Connie, C. Hasnain, Vertical Cavity Surface Emitting Lasers, Semiconductor Lasers: Past, Present, and Future, American Institute of Physics Press, Woodbury, NY, Aug., 1995.

D. E. Palik, Handbook of Optical Constants of Solids, Volumes I, II, and III, Elsevier Science & Tech, 1985.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, Third Edition, Vol IV, McGraw-Hill, 2009.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. Mc Gill, “Minority carrier diffusion length and lifetime in GaNâ€, Appl. Phys. Lett, 72, pp.3166-3168, 1998.

F. Chen, A.N. Cartwright, H. Lu, W. J. Schaff , “Temperature dependence of carrier lifetimes in InNâ€, Appl. Phys. Lett, 87, 212104-1-3, 2005.

T. Takamoto, T. Agui, E. Ikeda and H. Kuri, “High efficiency InGaP/InGaAs tandem solar cells lattice-matched to Ge substratesâ€, Solar Energy Materials and Solar Cells, 66, pp.511-517, 2001.

T. Takamoto, E. Ikeda, H. Kurita and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cellsâ€, Appl. Phys. Lett, 70, pp.381-383, 1997.

L. Hsu and W. Walukiewicz, “Modelling of InGaN/Si tandem solar cellsâ€, J. of Appl. Phys., 104: 024507, 2008.




DOI (PDF): https://doi.org/10.20508/ijrer.v4i3.1636.g6400

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4