A Study on Spectral Response and External Quantum Efficiency of Mono-Crystalline Silicon Solar Cell

Subhash Chander, A. Purohit, Anshu Nehra, S. P. Nehra, M. S. Dhaka

Abstract


This paper presents a study on spectral response and external quantum efficiency of mono-crystalline silicon solar cell at room temperature. The experiment was undertaken in the wavelength range of 350-1100 nm employing spectral response meter. The results show that the spectral response increases with wavelength, reached to maximum at 890 nm and beyond the maximum decreases rapidly. The external quantum efficiency also increases with wavelength, reached to maximum at 590 nm, slowly decreases up to 970 nm and subsequently decreases rapidly. The energy band gap is calculated and found to be 1.12 eV. The results are in good agreement with the available literature.


Keywords


Mono-Si solar cell; Spectral response; External quantum efficiency; Spectral response meter

Full Text:

PDF

References


G.N. Tiwari and S. Dubey. Photovoltaic Modules and Their Applications, RSC Publishing, London (2010).

S.R. Wenham, M.A. Green, M.E. Watt and R. Corkish, Applied Photovoltaics, Earthscan, London, UK (2012).

C.S. Solanki, B.M. Arora, J. Vasi and M.B. Patil, Solar Photovoltaics, Cambridge University Press India Pvt. Ltd., New Delhi (2013).

E. Radziemska, Effect of temperature on dark current characteristics of silicon solar cells and diodes, International Journal of Energy Research 30, 127-134 (2006).

W. Cai, F. Chao, T.J. Long, L.D. Xiong, H.S. Fu and X.Z. Gang, The influence of environment temperatures on single crystalline and polycrystalline silicon solar cell performance, Sci. China-Phys Mech Astron 55, 235-241 (2012).

Fraunhofer Institute for Solar Energy Systems: Photovoltaic reports 18-29 (2014).

A. Trabelsi, A. Zouari, Analytical model and photovoltaic parameters improvement of polysilicon solar cells with porous silicon emitter, Solar Energy 107, 220-226 (2014).

L. Zeng, M. Li, Y. Chen, H. Shen, A simplified method to modulate colors on industrial multi-crystalline silicon solar cells with reduced current losses, Solar Energy 103, 343-349 (2014).

M. Ayed, M. Fathi, M. Abderrazak and A. Aissat, International Journal of Renewable Energy Research 2 (4), 596 (2012).

K.R. McIntosh, G. Lau, J.N. Cotsell, K. Hanton, D.L. Batzner, F. Bettiol and B.S. Richards, Prog.Photovolt: Res.Appl.17, 191 (2009).

K.H. Yang and J.Y. Yang, Solar Energy 85, 419 (2011).

G. Nofuentes, B. Garcia-Domingo, J.V. Munoz and F. Chenlo, Applied energy 113, 302 (2014).

S.K. Sharma, H. Im, D.Y. Kim and R.M. Mehra, Indian Journal of Pure & Applied Physics 52, 293 (2014).

L. Fang, L. Danos and T. Markvart, Proceedings of the 28th European photovoltaic solar energy conference and exhibition (2013) Sept. 30-Oct.01, Paris, France.

S. Ashok and K.P. Pande, Solar Cells 14, 61 (1985).

S.R. Messenger, J.H. Warner, P.P. Jenkins, R.J. Walters and J.R. Lorentzen, IEEE 978-1- 4244-1641-7/08 (2008).

A.B. Mohan, N.A. Mahadev, O.A. Haradchandra, S.H. Hitesh, C.G. Devram, K. Ramankutty, LED based solar cell spectral response IP application 2869/MUM/2012 (2012).

C.S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications, Second Edition, PHI Learning Pvd. Ltd., New Delhi (2013).




DOI (PDF): https://doi.org/10.20508/ijrer.v5i1.1760.g6469

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4