Solar Heating System to Reduce Friaje in High Andean Homes

Ciro Espinoza Montes, Pedro Sánchez Cortez

Abstract


This research is the applied technological kind and has an applied level it’s within the Solar Energy Research line, the purpose is to define the configuration of the solar heating system that has an efficient influence to reduce the cold temperature in high Andean homes. To that aim a solar heating systems was designed, built and installed in the districts located between 3600 m.a.s.l. and 4000 m.a.s.l. in the provinces of Chupaca and Concepcion in Junin, Peru. We used the Systemic method and the cause comparative design, to measure temperature variation within the chamber and the room we made sure the isolation of the room was the best possible state. To test the hypothesis, we used the linear regression and the F statistic test of Fisher to determine the significant coefficients of the model. The outcome of the research states that configuration of the solar heating system should have a smaller volume of the chamber with a bigger area of the collector-accumulator, which will increase the temperature in Andean homes.


Keywords


solar energy, heating, friaje, energy efficiency

Full Text:

PDF

References


Agencia EFE, «Un total de 409 personas han muerto en Perú por neumonías y frío este año,» 20 julio 2010.

S. Chamoli, R. Chauhan, N. Thakur y J. Saini, «A review of the performance of double pass solar air heater,» Renewable and Sustainable Energy Reviews, vol. 16, nº 1, p. 481–492, January 1012.

P. Domancic Herrera, «Diseño de un sistema de calefacción solar para un edificio público,» Universidad de Chile, Santiago de Chile, 2008.

G. Chávez Oblitas, «Almacenamiento de energía solar térmica para diferentes aplicaciones (calefaccion de vivienda rural),,» Arequipa, 2009.

SENCICO, «Calefactores solares SENCICO,» Suplementos Especiales de Construccion&Vivienda, vol. III, nº 31, pp. 3-7, 15 agosto 2009.

J. Torres, «Climatización considerando el ahorro de energía y el confort térmico de las personas en ambientes dedicados a tareas de oficina,» Editorial de la Universidad Tecnológica Nacional, Santa Fe, 2010.

A. Olivares Clavel y G. Torres Flores, «Caracterización de un sistema de calentamiento de aire por medio de energía solar con almacenamiento energético,» Universidad Centroamericana José Simeón Cañas, El Salvador, 2010.

J. Nacif Hartley, Acumulación térmica para un sistema solar de calefacción activo, Santiago de Chile: Universidad de Chile, 2011.

GRUPO PUCP, «Casa caliente limpia: K'oñichuyawasi,» America Renovable, vol. 5, nº 14, pp. 60-62, noviembre 2011.

R. Sarachitti, C. Chotetanorm, C. Lertsatitthanakorn y M. Rungsiyopas, «Thermal performance analysis and economic evaluation of roof-integrated solar concrete collector,» Energy and Buildings, vol. 45, nº 6, pp. 1403-1408, June 2011.

C. Arkar y S. Medved, «Optimization of latent heat storage in solar air heating system with vacuum tube air solar collector,» Solar Energy, vol. 111, pp. 10-20, January 2015.

N. Truong y L. Gustavsson, «Solar heating systems in renewable-based district heating,» Energy Procedia, vol. 61, p. 1460–1463, 2014.

M. Dabaieh y A. Elbably, «Ventilated Trombe wall as a passive solar heating and cooling retrofitting approach; a low-tech design for off-grid settlements in semi-arid climates,» Solar Energy, vol. 122, p. 820–833, 2015.

E. Andersen, Z. Chen, J. Fan, S. Furbo y B. Perers, «Investigations of intelligent solar heating systems for single family house,» Energy Procedia, vol. 48, pp. 1-8, 2014.

D. Skaarup Østergaard y S. Svendsen, «Case study of low-temperature heating in an existing single-family house—A test of methods for simulation of heating system temperatures,» Energy and Buildings, vol. 126, pp. 535-544, August 2016.

C. Flynn y K. Sirén, «Influence of location and design on the performance of a solar district heating system equipped with borehole seasonal storage,» Renewable Energy, vol. 81, pp. 377-388, 2015.

G. Serale, E. Fabrizio y M. Perino, «Design of a low-temperature solar heating system based on a slurryPhase Change Material (PCS),» Energy and Buildings, vol. 106, pp. 44-58, 2015.

C. Espinoza Montes, Metodología de investigación tecnológica. Pensando en sistemas, Segunda ed., Huancayo, Perú: Soluciones Gráficas SAC, 2014.

H. Sánchez Carlessi y C. Reyes Meza, Metodología y diseños en la investigación científica, Segunda ed., Lima, Perú: Gráfica Los Jazmines, 1996.

M. Fernández Barrera, Energía Solar. Sistemas térmicos para acs, Barcelona: Liber Factory, 2010.

T. Schwarz, «Climate-Data,» 12 05 2013. [En línea]. Available: http://es.climate-data.org/location/771599/.




DOI (PDF): https://doi.org/10.20508/ijrer.v6i4.4809.g6944

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4