An Alternative Method to Optimize Mirrors Positions in Linear Fresnel Reflector

youssef elmaanaoui, Dennou Saifaoui

Abstract


Linear Fresnel Reflector (LFR) is regarded to as a promising Concentrated Solar Power technology (CSP). However, it suffers from low optical efficiency affected by optical losses such as blocking and shading. To overcome these problems, this study presents an alternative method to optimize mirrors positions in the LFR solar field in order to enhance its optical efficiency through the reduction of shading losses. This purpose is fulfilled by the calculation of the right spacing between adjacent mirrors to avoid mutual shading at a given Design Profile Angle (DPA). The comparison conducted between our method and a previously published one showed a good match between obtained results proving the validity of the work presented herein. After that, the impact of our alternative method on the optical behavior of the LFR, on the geometrical aspects of the solar field, and on energy production of the system is analyzed. Results showed that the whole process of developing new complex methods to optimize mirrors positions in the solar field is questionable. Instead, the authors think the use of simple equidistant spacing between adjacent mirrors is sufficient to reach satisfying results.

Keywords


Linear Fresnel Reflector; Shading; Blocking; Design profile angle.

Full Text:

PDF

References


R. Abbas, M. J. Montes, A. Rovira, and J. M. Martínez-Val, “Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions,†Sol. Energy, vol. 124, pp. 198–215, Feb. 2016.

R. Abbas and J. M. Martínez-Val, “Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors,†Renew. Energy, vol. 75, pp. 81–92, Mar. 2015.

S. Benyakhlef, A. Al Mers, O. Merroun, A. Bouatem, N. Boutammachte, S. El Alj, H. Ajdad, Z. Erregueragui, and E. Zemmouri, “Impact of heliostat curvature on optical performance of Linear Fresnel solar concentrators,†Renew. Energy, vol. 89, pp. 463–474, Apr. 2016.

M. J. Montes, C. Rubbia, R. Abbas, and J. M. Martínez-Val, “A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power,†Energy, vol. 73, pp. 192–203, Aug. 2014.

J. D. Nixon, P. K. Dey, and P. A. Davies, “Design of a novel solar thermal collector using a multi-criteria decision-making methodology,†J. Clean. Prod., vol. 59, pp. 150–159, Nov. 2013.

J. D. Nixon and P. A. Davies, “Cost-exergy optimisation of linear Fresnel reflectors,†Sol. Energy, vol. 86, no. 1, pp. 147–156, Jan. 2012.

R. Abbas, J. M. Martínez-Val, J. Muñoz-Antón, M. Valdés, A. Ramos, A. Rovira, M. J. Montes, H. Sait, R. Muñoz, Ã. Gamarra, and M. Villén, “A Quest to the Cheapest Method for Electricity Generation in Concentrating Solar Power Plants,†Energy Procedia, vol. 75, pp. 514–520, Aug. 2015.

R. Abbas, J. Muñoz-Antón, M. Valdés, and J. M. Martínez-Val, “High concentration linear Fresnel reflectors,†Energy Convers. Manag., vol. 72, pp. 60–68, Aug. 2013.

R. Abbas and J. M. Martínez-Val, “A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study,†Appl. Energy, Feb. 2016.

D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,†Sol. Energy Mater. Sol. Cells, vol. 95, no. 10, pp. 2703–2725, Oct. 2011.

D. Cocco and G. Cau, “Energy and economic analysis of concentrating solar power plants based on parabolic trough and linear Fresnel collectors,†Proc. Inst. Mech. Eng. Part J. Power Energy, vol. 229, no. 6, pp. 677–688, Sep. 2015.

A. Giostri, M. Binotti, P. Silva, E. Macchi, and G. Manzolini, “Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough vs Fresnel,†2011, pp. 621–630.

G. Morin, J. Dersch, W. Platzer, M. Eck, and A. Häberle, “Comparison of Linear Fresnel and Parabolic Trough Collector power plants,†Sol. Energy, vol. 86, no. 1, pp. 1–12, Jan. 2012.

R. Abbas, M. J. Montes, M. Piera, and J. M. Martínez-Val, “Solar radiation concentration features in Linear Fresnel Reflector arrays,†Energy Convers. Manag., vol. 54, no. 1, pp. 133–144, Feb. 2012.

J. Muñoz-Antón, R. Abbas, J. Martínez-Val, and M. Montes, “Going further with Fresnel Receiver: New Design Window for Direct Steam Generation,†Energy Procedia, vol. 49, pp. 184–192, 2014.

R. Muñoz, J. M. Martínez-Val, R. Abbas, J. Muñoz-Antón, A. Rovira, and M. J. Montes, “A Concentrating Solar Power Prototype for validating a new Fresnel-based plant design,†Energy Procedia, vol. 75, pp. 423–429, Aug. 2015.

J. Zhu and H. Huang, “Design and thermal performances of Semi-Parabolic Linear Fresnel Reflector solar concentration collector,†Energy Convers. Manag., vol. 77, pp. 733–737, Jan. 2014.

S. Balaji, K. S. Reddy, and T. Sundararajan, “Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors,†Appl. Energy, vol. 179, pp. 1138–1151, Oct. 2016.

S. S. Sahoo, S. Singh, and R. Banerjee, “Thermal hydraulic simulation of absorber tubes in linear Fresnel reflector solar thermal system using RELAP,†Renew. Energy, vol. 86, pp. 507–516, Feb. 2016.

N. B. Desai and S. Bandyopadhyay, “Integration of parabolic trough and linear Fresnel collectors for optimum design of concentrating solar thermal power plant,†Clean Technol. Environ. Policy, vol. 17, no. 7, pp. 1945–1961, Oct. 2015.

O. A. Hamed, H. Kosaka, K. H. Bamardouf, K. Al-Shail, and A. S. Al-Ghamdi, “Concentrating solar power for seawater thermal desalination,†Desalination, vol. 396, pp. 70–78, Oct. 2016.

H. H. Sait, J. M. Martinez-Val, R. Abbas, and J. Munoz-Anton, “Fresnel-

based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors,†Appl. Energy, vol. 141, pp. 175–189, Mar. 2015.

V. Sharma, J. K. Nayak, and S. B. Kedare, “Effects of shading and blocking in linear Fresnel reflector field,†Sol. Energy, vol. 113, pp. 114–138, Mar. 2015.

D. R. Mills and G. L. Morrison, “Compact linear Fresnel reflector solar

thermal powerplants,†Sol. Energy, vol. 68, no. 3, pp. 263–283, 2000.

D. R. Mills and G. L. Morrison, “Modelling study for compact Fresnel reflector power plant,†J. Phys. IV, vol. 9, no. PR3, p. Pr3-159-Pr3-165, Mar. 1999.

A. Barbón, N. Barbón, L. Bayón, and J. A. Otero, “Optimization of the length and position of the absorber tube in small-scale Linear Fresnel Concentrators,†Renew. Energy, vol. 99, pp. 986–995, Dec. 2016.

J. D. Nixon, P. K. Dey, and P. A. Davies, “Design of a novel solar thermal collector using a multi-criteria decision-making methodology,†J. Clean. Prod., vol. 59, pp. 150–159, Nov. 2013.

J. Chaves and M. Collares-Pereira, “Etendue-matched two-stage concentrators with multiple receivers,†Sol. Energy, vol. 84, no. 2, pp. 196–207, Feb. 2010.

“EnergyPlus | EnergyPlus.†[Online]. Available: https://www.energyplus.net/. [Accessed: 02-Jun-2016].

F. Chen, M. Li, R. Hassanien Emam Hassanien, X. Luo, Y. Hong, Z. Feng, M. Ji, and P. Zhang, “Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator,†Int. J. Photoenergy, vol. 2015, pp. 1–9, 2015.

M. Lin, K. Sumathy, Y. J. Dai, R. Z. Wang, and Y. Chen, “Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver,†Appl. Therm. Eng., vol. 51, no. 1–2, pp. 963–972, Mar. 2013.

W. T. Xie, Y. J. Dai, and R. Z. Wang, “Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens,†Energy Convers. Manag., vol. 52, no. 6, pp. 2417–2426, Jun. 2011.

V. Sharma, “Hourly and Monthly Variation in Shading and Blocking of Aperture Area in a Linear Fresnel Reflector Field,†Energy Procedia, vol. 48, pp. 233–241, 2014.




DOI (PDF): https://doi.org/10.20508/ijrer.v7i4.6105.g7191

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4