Thermal and Electrical Performance analysis of Rooftop Solar Photovoltaic Power Generator

AJOYA KUMAR PRADHAN, SANJEEB KUMAR KAR, MAHENDRA KUMAR MOHANTY

Abstract


The solar energy is the vital source of renewable energy used today and nearly eighty percentage of the energy is absorbed by the surroundings. The mathematical modeling of energy and exergy analysis with both the thermal and electrical quality of polycrystalline PV module has been entailed under different seasonal climatic circumstances of Bhubaneswar, Odisha, India. Different parameters like energy, converted power and exergy efficiencies have been estimated. The simulation results clarify that the efficiency of the above-mentioned parameters are changing with respect to the variation in the wind speed, temperature and solar insolations. The data validation has been performed by using artificial neural network. Ambient temperature, cell temperature, wind speed, solar radiation and time are used as input, and thermal and electrical efficiencies are the outputs in ANN structure. It has been evidently observed that the correlation factor and efficiency are higher in training process when compared to the testing process.

Keywords


Energy; Exergy; Solar radiation; Photovoltaic module; Wind speed; ANN;

Full Text:

PDF

References


K. H. Solangi, M. R. Islam, R. Saidur, N. A. Rahim, H. Fayaz, “A review on global solar energy policyâ€, Renewable and Sustainable Energy Reviews, 15(4) (2011) 2149–2163.

E. K. Akpinar, F. Kocyigit, “Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber platesâ€, Applied Energy, 87(11) (2010) 3438-3450.

R. Saidura, G. BoroumandJazia, S. Mekhlif, M. Jameel, “Exergy analysis of solar energy applicationsâ€, Renewable and Sustainable Energy Reviews, 16 (2012) 350– 356.

C. Onan, D. B. Ozkan, S. Erdem, “Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applicationsâ€, Energy, 35 (2010) 5277–5285.

D. Alta, E. Bilgili, C. Ertekin, O. Yaldiz, “Experimental investigation of three different solar air heaters: energy and exergy analysesâ€, Applied Energy, 87 (2010) 2953–2973.

S. Nayak, G. N. Tiwari, “Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouseâ€, Energy and Buildings, 40 (2008) 2015–2021.

M. A. Rosen, C. A. Bulucea, “Using exergy to understand and improve the efficiency of electrical power technologiesâ€, Entropy, 11 (2009) 820–835.

R. F. Ghahfarokhi, S. Khalilarya, R. Ebrahimi, “Energy and exergy analyses of homogeneous charge compression ignition engineâ€, Thermal Science. 17 (2013) 107–117.

T. J. Kotas, “The Exergy Method of Thermal Plant Analysisâ€, Anchor Brendon Ltd, Great Britain, (1985).

G. D. Vuckovi, M. V. Vukic, M. M. Stojiljkovic, D. D. Vuckovi, “Avoidable and unavoidable exergy destruction and exergoeconomic evaluation of the thermal processes in a real industrial plantâ€, Thermal Science. 16 (2) (2012) S433–S446.

I. Atmaca, S. Kocak, “Theoretical energy and exergy analyses of solar assisted heat pump space heating systemâ€, Thermal Science. 18 (Suppl. (2)) (2014) S417–S427.

V. V. Tyagi, A.K. Pandey, G. Giridhar, B. Bandhopdhayay, S. R. Park, S. K. Tyagi, “Comparative study based on exergy analysis of solar air dryer using temporary thermal energy storage, International Journal of Energy Resourcesâ€, 36 (2012) 724–736.

E Saloux, A Teyssedou, M. Sorin, “Analysis of photovoltaic (PV) and Photovoltaic/thermal (PV/T) systems using the exergy methodâ€, Energy Building, 67 (2013) 272-285.

S. A. Kalogirou, Sotirios Karellas, V. Badescu, K.Braimakis, “Energy analysis on solar thermal system: A better understanding of their sustainabilityâ€, Renewable Energy, 85 (2016) 1328-1333.

Y. A. Cengel, and M. A. Boles. “Thermodynamics: An Engineering Approachâ€. 5th edition. New York: Tata McGraw Hill, (2006).

A. Bejan, “Advanced Engineering Thermodynamicsâ€, John Wiley & Sons, Chichester, UK, (1998).

R. Saidur, H. H. Masjuki, M. Y. Jamaluddin, “An application of energy and exergy analysis in residential sector of Malaysiaâ€. Energy Policy, 35(2) (2007) 1050–1063.

M. Mohammadnejad, M. Ghazvini, F. S. Javadi, R. Saidur, “Estimating the exergy efficiency of engine using nanolubricantsâ€. Energy Education Science and Technology A: Energy Science and Research, 27(2) (2011) 447–454.

R. Saidur, J. U. Ahamed, H. H. Masjuki, “Energy, exergy and economic analysis of industrial boilersâ€, Energy Policy 38(5) (2010) 2188–2197.

E. Dikmen, A. Sencan, R. Selbas, “Energetic and exergetic approach to vapour compression refrigeration cycle with two-stage and intercooler for new refrigerantsâ€, Energy Education Science and Technology-Part A, 26(2) (2011) 205–219.

O. Hacihafizoglu. “Energy–exergy analysis of gas turbine cycle in a combined cycle power plantâ€, Energy Education Science and Technology-Part A, 27(1) (2011) 123–138.

R. Saidur, M. A. Sattar, H. H. Masjuki, S. Ahmed, U. Hashim, “An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysiaâ€, Energy Policy, 35(8) (2007) 4018–4026.

N. P. Nwosu, “Employing exergy-optimized pin fins in the design of an absorber in a solar air heaterâ€, Energy 35(2) (2010) 571–575.

A. Shukla, D. Buddhi, R. L. Sawhney, “Solar water heaters with phase change material thermal energy storage medium: a review, Renewable & Sustainable Energy Reviews, 13(8) (2009) 2119–2125.

R. Gomri, “Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer, Desalination, 249(1) (2009) 188–196.

C. Koroneos, E. Nanaki, G. Xydis. “Solar air conditioning systems and their applicability – an exergy approachâ€, Resources Conservation and Recycling, 55(1) (2010) 74–82.

A. R. Celma, F. Cuadros, “Energy and exergy analyses of OMW solar drying processâ€, Renewable Energy 34(3) (2009) 660–666.

M. V. J. J. Suresh, K. S. Reddy, A. K. Kolar, “4-E (energy, exergy, environment, and economic) analysis of solar thermal aided coal-fired power plants, Energy for Sustainable Development, 14 (2010) 267–279.

K. Sudhakar, T Srivastava, “Energy and exergy analysis of 36W solar photovoltaic module, International Journal Ambient Energy, (2013), http://dx.doi.org/10.1080/01430750.2013. 770799.

A. S. Joshi, I. Dincer, B. V. Reddy, “Thermodynamic assessment of photovoltaic systemsâ€, Solar Energy, 83 (2016) 1139–1149.

R. Petela, “Exergy of undiluted thermal radiationâ€, Solar Energy, 74(6) (2003) 469–488.

S. Dubey, G. N. Tiwari, “Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heaterâ€, Solar Energy, 82(7), (2008) 602–612.

A. D. Sahin, I. Dincer, M. A. Rosen, “Thermodynamic analysis of solar photovoltaic cell systemsâ€, Solar Energy Material and Solar. Cells, 91 (2007) 153–159.

J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, and A. Zaban, “Physical chemical principles of photovoltaic conversion with nano-particulate, meso-porous dye-sensitized solar cells,†Journal of Physical Chemistry B, 108(24) (2004) 8106–8118.

P. T. Landsberg and T. Markvart, “The carnot factor in solar cell theoryâ€, Solid-State Electronics, 42(4) (1998) 657–659.

A. A. Ghoneim, “Design optimization of photovoltaic powered water pumping systemsâ€, Energy Conversion and Management, 47(11-12) (2006) 1449–1463.

E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mountingâ€, Solar Energy Materials and Solar Cells, 92(11) (2008) 1393–1402.

S. Armstrong, W.G. Hurley, “A thermal model for photovoltaic panels under varying atmospheric conditionsâ€, Applied Thermal Engineering, 30 (2010) 1488-1495.

M.A. Rosen, F.C. Hooper, L.N. Barbaris, “Exergy analysis for the evaluation of the performance of closed thermal energy storage systemsâ€. Transaction of the ASME, Journal of Solar Energy Engineering, 1988 (110) (2016) 255–261.

D.L. Evan, Simplified method for predicting photovoltaic array output, Sol. Energy 27 (1981) 555–560.

T. Hove, “A method for predicting long-term average performance of photovoltaic systemâ€, Renewable Energy, 21 (2000) 207–229.

J. D. Mondel, Y. G. Yohanis, M. Smyth, B. Norton, “Long-term validated simulation of a building integrated photovoltaic systemâ€, Solar. Energy, 78 (2005) 163–176.

M. T. Nishioka Hatayama, Y. Uraoka, T. Fuyuki, R. Hagihara, M. Watanabe, “Field test analysis of PV system output characteristics focusing on module temperatureâ€, Solar Energy Material and Solar. Cells 75 (2003) 665–671.

Y. Jiang, “Prediction of monthly mean daily diffuse solar radiation using Artificial Neural Networks and comparison with other empirical modelsâ€, Energy Policy, 36 (2008) 3833-3837.

S. S. Leal, C. Tíba, R. Piacentini, “Daily UV radiation modeling with the usage of statistical correlations and Artificial Neural Networksâ€, Renewable Energy, 36 (2011) 3337-3344.

A. Koca, H. F. Oztop, Y. Varol, G. O. Koca, “Estimation of solar radiation using Artificial Neural Networks with different input parameters for Mediterranean region of Anatolia in Turkeyâ€, Expert Systems with Applications, 38(7) (2011) 8756-8762.

S. A. Kalogirou, E. Mathioulakis, V. Belessiotis, “Artificial Neural Networks for the performance prediction of large solar systemsâ€, Renew Energy, 63 (2014) 90–97.

A. K. Rai, N. D. Kaushika, B. Singh, N. Agarwal, “Simulation model of ANN based maximum power point tracking controller for solar PV systemâ€, Solar Energy Material and Solar Cells, 95 (2011) 773–778.

M. Karamirad, M. Omid, R. Alimardani, H. Mousazadeh, S. N. Heidari, “ANN based simulation and experimental verification of analytical four and five-parameters models of PV modulesâ€, Simulation Model Practice & Theory, 34 (2013) 86–98.

M. B. Ammar, M. Chaabene, Z. Chtourou, “Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical powerâ€, Energy Conversion Management, 65 (2013) 372–380.

A. Mellit, S. SaÄŸlam, S. A. Kalogirou, “Artificial Neural Network-based model for estimating the produced power of a photovoltaic moduleâ€, Renewable Energy, 60 (2013) 71–78.

F. Almonacid, C. Rus, L. Hontoria, F J Munoz, “Characterisation of PV CIS module by artificial neural networks. A comparative study with other methodsâ€, Renewable Energy, 35 (2010) 973–980.

Y. Yoru, T. H. Karakoc, A. Hepbasli, “Application of Artificial Neural Network method to exergy analysis of thermodynamic systemsâ€, 8th International Conference on Machine Learning and Applications, Miami Beach, Florida, (2009) 13-15.

A. Sozen, T. Menlik, S. Unvar, "Determination of efficiency of flat-plate solar collectors using Neural Network approach", Expert Systems with Applications, 35 (2008) 1533-1539.

G. Boyle, “Renewable Energy Power for a Sustainable Futureâ€. 2nd edition. Oxford: Oxford University Press (2004).

J. H. Watmuff, W. W. S. Charters, and D. Proctor, “Solar and wind induced external coefficients for solar collectors,â€COMPLES, 2 (1977) 56.

S. P. Sukhatme, Solar Energy, McGraw-Hill, New York, NY, USA, 1993.




DOI (PDF): https://doi.org/10.20508/ijrer.v7i4.6452.g7257

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4