Prediction of the Conversion Efficiency of a GaSb Thermophotovoltaic Converter Heated by Radioisotope Source

Faycal Bouzid

Abstract


In recent years, Gallium Antimonide (GaSb), which has smallest bandgap among III-V semiconductors family, became the subject of extensive investigations in the field of thermophotovoltaic (TPV) converters, because of the recent improvements in optoelectronic technology. In this paper, we investigated the heat to electricity conversion efficiency of a GaSb radioisotope thermophotovoltaic (RTPV) converter, taking account of the photons with energy below the cells bandgap using a comprehensive analytical process. The results show that a conversion efficiency greater than 28% can be obtained for radiator’s temperature of 1600k, at ambiant temperature. This efficiency will decrease as the cell temperature increase.

Keywords


Radioisotope; Emissivity; Thermophotovoltaic; Efficiency; Temperature

Full Text:

PDF

References


A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, England, 2003.

V.M. Andreev, A.S. Vlasov, V.P. Khvostikov, O.A. Khvostikova, P.Y. Gazaryan, S.V. Sorokina, N.A. Sadchikov, “Solar thermophotovoltaic convertors based on tungsten emittersâ€, J. Sol. Energy Eng. – Trans. ASME 129, pp. 298-303, 2007.

A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo, M. Mazzer, “The challenge of high-performance selective emitters for thermophotovoltaic applicationsâ€, Semiconductor Science and Technology. Vol. 18, pp. 174-183, 2003.

Donald L. Chubb, Fundamentals of thermophotovoltaic energy conversion, First Edition, Elsevier, 2007.

T. Bauer, Thermophotovoltaics Basic principles and critical aspects of system design, Springer, 2011.

W. M. Yang, S. K. Chou, C. Shu, Z. W. Li, H. Xue, “Research on micro-thermophotovoltaic power generatorsâ€, Solar Energy Materials & Solar Cells, Vol. 80, pp. 95-104, 2003.

S. Malvadkar and E. Parsons, “Analysis of Potential Power Sources for Inspection Robots in Natural Gas Transmission Pipelinesâ€, Topical Report DE-FC26-01NT41155, National Energy Technology Laboratory, May 7, 2007.

A. Schock, M. Mulcunda, C. Or, V. Kumar, and G. Summers, “Design, Analysis, and Optimization of a Radioisotope Thermo-photovoltaic (RTPV) Generator, and its Applicability to an Illustrative Space Missionâ€, Acta Astronautica, Vol. 37, pp. 21-57, 1995.

A. Kovacs and P. Janhunen, “Thermo-photovoltaic spacecraft electricity generationâ€, Astrophys. Space Sci. Trans., 6, pp. 19-26, 2010.

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng and S. Ermer, “Thermophotovoltaic Energy Conversion for Spaceâ€, The journal of physical chemistry, C, Vol. 112, pp. 7841-7845, 2008.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Third Edition, John Wiley, Interscience, 2006.

Y. Wang, N.F.Chen, X.W.Zhang, T.M.Huang, Z.G.Yin, Y.S.Wang, H.Zhang, “Evaluation of thermal radiation dependent performance of GaSb thermophotovoltaic cell based on an analytical absorption coefficient modelâ€, Solar Energy Materials & Solar Cells, Vol. 94, pp. 1704-1710, 2010.

X. Peng, X. Guo, B. Zhang , X. Li, X. Zhao, X. Dong, W. Zheng, G. Du, “Numerical analysis of the short-circuit current density in GaInAsSb thermophotovoltaic diodesâ€, Infrared Physics & Technology, Vol. 52, pp. 152-157, 2009.

L.G. Ferguson, L.M. Fraas, “Theoretical study of GaSb PV cell efficiency as a function of temperatureâ€, Solar Energy Materials & Solar Cells, Vol. 39, pp. 11-18, 1995.

N.N.Lal and A.W.Blakers, “Sliver Cells in Thermo-photovoltaic Systemsâ€, Solar Energy Materials & Solar Cells, Vol. 93, Issue 2, pp. 167-175, Feb. 2009.

D. Martin, C. Algora, “Temperature-dependent GaSb material parameters for reliable Thermo-photovoltaic cell modelingâ€, Semicond. Sci. Technol, Vol. 19, pp. 1040-1052, 2004.

O.V. Sulima, A.W. Bett, “Fabrication and simulation of GaSb thermophotovoltaic cellsâ€, Solar Energy Materials & Solar Cells, Vol. 66, pp. 533-540, 2001.

D.M. Caughey, R.E. Thomas, “Carrier mobility in Silicon empirically related to doping and fieldâ€, Proc. IEEE 55, pp. 2192-2193, 1967.

E. Rosencher, B. Vinter, Optoélectronique, Thomson-CSF, Masson, 1998.

A. Chandola, R. Pino and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSbâ€, Semiconductor Science and Technology, Vol. 20, pp. 886-893, 2005.

L. L. Li, W. Xu, Z. Zeng, A. R. Wright, C. Zhang, J. Zhang, Y. L. Shi, “Mid-infrared absorption by short-period InAs/GaSb type II superlatticesâ€, Microelectronics Journal, Vol. 40, pp. 815-817, 2009.

Ioffe Physico-Technical Institute: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaSb/bandstr.html

A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, “Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of Al2O3â€, Applied Physics Letters, Vol. 97, Issue 14, pp. 143502-143502-3 , 2010.

V. Andreev, V. Khvostikov, and A. Vlasov, “Solar Thermophotovoltaicsâ€, Springer Series in Optical Sciences, Vol. 130/2007, pp.175-197, 2007.

K. Qiu, A. C. S. Hayden, M. G. Mauk, O. V. Sulima, “Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources“, Solar Energy Materials & Solar Cells, Vol. 90, pp. 68-81, 2006.




DOI (PDF): https://doi.org/10.20508/ijrer.v3i3.810.g6197

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4