Global Solar Radiation of Some Regions of Cameroon Using the Linear Angstrom and Non-Linear Polynomial Relations (Part I) Model Development

Afungchui David, Neba Rene Ngwa

Abstract


The aim of this paper is to evaluate the global solar radiation of some representative cities of Cameroon using the linear Angstrom and non-linear polynomial relations. The choice of these cities which include: Bamenda in the North West region, Douala in the littoral region, Yaounde in the centre region, Ngaoundere in the Adamawa region, and Bertoua in the eastern region; is determined mostly by the availability of data. The Angstrom correlation coefficients for the linear, quadratic and cubic polynomial models would be calculated using the least square method for the different regions. The input data for the analyses are the measured global solar radiation and mean number of monthly sun shine hours. The data for the analyses is obtained partly from the archives of National Aeronautics and Space Administration (NASA) and partly from the archives of the Cameroon Department of Meteorology, Douala. The data used covers a period of 23 years from 1983 to 2005. We demonstrate the validity of the developed models by comparing the evaluated values of global solar radiation with the measured ones. Hence the regression equations can be used to confidently predict the global solar radiation of the representative regions in the absence of experimental data.


Keywords


Global Solar Radiation, Angstrom, least square method, regression analysis, sun shine hours

Full Text:

PDF

References


Emmanuel, N, Elie, T: Energy Systems:Vulnerability – Adaptation – Resilience (VAR), Helio International, Regional Focus: sub-Saharan Africa-Cameroon, 2009.

Growth and employment strategy paper 2010/2020, August 2012. In: Cameroon: Poverty Reduction Strategy Paper. IMF Country Report No. 10/257. www.imf.org/external/pubs/ft/scr/2010/cr10257.pdf

Policy DB Details: Cameroon (2012), Renewable Energy & Energy Efficiency Partnership (REEEP), http://www.reeep.org/index.php?id=9353&text=&special=viewitem&cid=67

J. K. Page (1964). The estimation of monthly mean values of daily short-wave radiation on vertical and inclined surfaces from sunshine records for latitude 400N – 400S, in Proceedings of the UN Conference on New Sources of Energy 4:378-390

A. S. Angstrom (1924). Solar and terrestrial

radiation. Quart Journal of the Royal Meteorological Society 50:121-126

E. O. Falayi and A. B. Rabiu (2005). Modeling global solar radiation using sunshine duration data. Nigeria Journal of Physics 17:181-186.

B. Safari and J. Gasore (2009). Estimation of global solar radiation on horizontal surface in Rwanda using empirical models. Asian Journal of Science Research 2: 68-75.

V. Badescu (1999). Correlations to estimate monthly mean daily global solar irradiation: application [4] A. M. Al-Salihi, M. M. Kadum, and A. J. Mohammed (2010), estimation of global solar radiation on horizontal surface using meteorological measurement for different cities in Iraq. Asian Journal of Scientific Research 3(4):240-248

B. Aksoy (1997). Estimated monthly average global radiation for Turkey and its comparison with observations. Renewable Energy 10:625-633.

M. Sekar, M. Sakthivel, S. S. Kumar & C. Ramesh (2012). Estimation of global solar radiation for Chennai. European Journal of Scientific research 73(3):415-424

H. Z. Che, G. Y. Shi, X. Y. Zhang, J. Q. Zhao, Y. Li (2007). Analysis of sky condition using 40 years records of solar radiation data in China. Theoretical and Applied Climatology 89:83-94.

K. Ulgen and A. Hepbasli (2004b). solar radiation models. Part 2: Comparing and developing new models. Energy Sources 26:521-530.

A. M. Al-Salihi, M. M. Kadum, and A. J. Mohammed (2010), estimation of global solar radiation on horizontal surface using meteorological measurement for different cities in Iraq. Asian Journal of Scientific Research 3(4):240-248

J. K. Page (1964). The estimation of monthly mean values of daily short-wave radiation on vertical and inclined surfaces from sunshine records for latitude 400N – 400S, in Proceedings of the UN Conference on New Sources of Energy 4:378-390

R. J. Stone (1993). Improved statistical procedure for the evaluation of solar radiation estimation models. Solar Energy 51(4) :289-291

L. E. Akpabio, S. O. Udo, S. E. Etuk (2004). Empirical correlation of global solar radiation with meteorological data for Onne, Nigeria. Turkish Journal of Physics 28(3):222-227.

A. A. El-Sebaii, F. S. Al-Ghamdi, Al-Hazmi and Adel S. Faidah (2009). Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia. Energy Policy 37:3654-3669.

K. Bakirci (2009). Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34:485-501.

R. T. Ogulata and S. N. Ogulata (2002). Solar radiation in Adana, Turkey. Applied Energy 71:351-358.

H. Aras, O. Balli and A. Hepbasli (2006). Global Solar Potential. Part 1: Model Development. Energy Sources, Part B, 1(3):303-315.

K. Ulgen and A. Hepbasli (2002c). estimation of solar radiation parameters for Izmir, Turkey. International Journal of Energy Resources 24:773-785.

B. G. Akinoglu and A. Ecevit (1990). Construction of a quadratic model using modified Angstrom coefficients to estimate global solar radiation. Solar Energy 45(2):85-92.

E. C. Okogbue and J. A. Adedokun (2002). The estimation of solar radiation at Ondo, Nigeria. Journal of Physics 14:97-99.

A. A. Trabea and M. A. M. Shaltout (2000). Correlation of global solar radiation with meteorological parameters over Egypt. Renewable Energy 21(2):297-308.

M. S. Okundamiya and A.N. Nzeako (2011). Estimation model for estimating solar radiation on horizontal surfaces for selected cities in the six geopolitical zones in Nigeria. Journal of Control Science and Engineering. Hindawi Publishing Corporation.

A. Sfetsos and A. H. Coonick (2000). Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy 68:169-178.

D. Njomo and L. Wald (2006). Solar irradiation retrieval in Cameroon from meteosat satellite imagery using Helio_2 method. ISESCO Science and Technology Vision 2(1):19-24.

M. Gunes (2001). Analysis of daily total horizontal solar radiation measurements in Turkey. Energy Sources 23:563-570.

A. Kilic and A. Ozturk (1983). Solar Energy. Istanbul, Turkey: Kipas Distribution.

H. Ogelman, A. Ecevit, and E. Tasdemiroglu (1984). A new method for estimating solar radiation from bright sunshine data. Solar Energy 33:619-625.

I. T. Togrul and H. Togrul (2002). Global solar radiation over Turkey: Comparison of predicted and measured data. Renewable Energy 25:55-67.

M. Kaya (2012). Estimation of global solar radiation on horizontal surface in Erzincan, Turkey. International Journal of Physical Sciences 7(33):5273-5280.

M. Sekar, M. Sakthivel, S. S. Kumar & C. Ramesh (2012). Estimation of global solar radiation for Chennai. European Journal of Scientific research 73(3):415-424

A. M. Al-Salihi, M. M. Kadum, and A. J. Mohammed (2010), estimation of global solar radiation on horizontal surface using meteorological measurement for different cities in Iraq. Asian Journal of Scientific Research 3(4):240-248

T. D. M. A. Samuel (1991). Estimation for global solar radiation for Sri Lanka. Solar Energy 47:333-337.

S. Tarhan and A. Sari (2005). Model selection for global and diffuse radiation over the Central Black Sea (CBS) region of Turkey. Energy Conversion and Management 46(4):605-613

E. Tasdemiroglu and R. Sever (1986). Monthly and yearly average maps of total and direct solar radiation in Turkey. Solar Energy 37:205-213.

E. Tasdemiroglu and R. Sever (1991a). Maps for average bright sunshine hours in Turkey. Energy Conversion and Management 31:545-552.

E. Tasdemiroglu and R. Sever (1991b). Estimation of monthly average daily diffuse radiation in Turkey. Energy 16:787-790.

M. Tiris, C. Tiris and I. E. Ture (1995). Diffuse solar radiations: Applications to Turkey and Australia. Energy 20:745-749.

M. Tiris, C. Tiris and I. E. Ture (1996). Correlations of monthly average daily global, diffuse and beam radiations with hours of bright sunshine in Gebze, Turkey. Energy Conversion and Management 37:1417-1421.

K. Ulgen and A. Hepbasli (2002a). Comparison of solar radiation correlation for Izmir, Turkey. International Journal of Energy Resources 26:413-430.

NASA (2010). Surface Meteorology and Solar Energy Data and Information. http://eosweb.larc.nasa.gov/sse/.

P. I. Cooper (1969). The absorption of radiation in solar stills. Solar Energy 2(3):333-346.

J. A. Duffie, W. A. Beckman (1991). Solar Engineering of Thermal Processes. John Wiley and Sons Inc. New York.




DOI (PDF): https://doi.org/10.20508/ijrer.v3i4.962.g6232

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4